The N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes involved in the metabolism of drugs, environmental toxins and the aromatic amine carcinogens present in cigarette smoke. Genetic variations in NAT2 have long been recognized as the cause of variable enzymatic activity or stability, leading to slow or rapid acetylation. In the present study, we genotyped three single-nucleotide polymorphisms (SNPs) from the NAT2 gene (rs1799929, rs1799930 and rs1799931), using TaqMan allelic discrimination, among 212 individuals from six major South Indian populations and compared the results with other available Indian and worldwide data. All three of the markers followed Hardy–Weinberg equilibrium and were highly polymorphic in the studied populations. The constructed haplotypes showed a high level of heterozygosity. All of the populations in the present study commonly shared only four haplotypes out of the eight possible three-site haplotypes. The haplotypes exhibited fairly high frequencies across multiple populations, where three haplotypes were shared by all six populations with a cumulative frequency ranging from 88.2% (Madiga) to 97.0% (Balija). We also observed a tribal-specific haplotype. A strong linkage disequilibrium (LD) between rs1799929 and rs1799930 was consistent in all of the studied populations, with the exception of the Madiga. A comparison of the genomic regions 20-kb up- and downstream of rs1799930 in a large number of worldwide samples showed a strong LD of this SNP with another NAT2 SNP, rs1112005, among the majority of the populations. Moreover, our lifestyle test (hunter–gatherer versus agriculturist) in comparison with the NAT2 variant suggested that two of the studied populations (Balija and Madiga) have likely shifted their diet more recently.
Background: Glutathione S-transferases (GSTs) are members of the phase II biotransformation enzymes that play a key role in cellular detoxification of chemical carcinogens and xenobiotics. Variations at GST genes have been reported in different human populations, and some association studies have reported increased risk for cancers and other disease end points. The present study was conducted to investigate the allele frequency variations in south Indian populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.