Propaganda spreads the ideology and beliefs of like-minded people, brainwashing their audiences, and sometimes leading to violence. SemEval 2020 Task-11 aims to design automated systems for news propaganda detection. Task-11 consists of two sub-tasks, namely, Span Identification -given any news article, the system tags those specific fragments which contain at least one propaganda technique and Technique Classification -correctly classify a given propagandist statement amongst 14 propaganda techniques. For sub-task 1, we use contextual embeddings extracted from pre-trained transformer models to represent the text data at various granularities and propose a multi-granularity knowledge sharing approach. For sub-task 2, we use an ensemble of BERT and logistic regression classifiers with linguistic features. Our results reveal that the linguistic features are the reliable indicators for covering minority classes in a highly imbalanced dataset.
In this work, we present to the NLP community, and to the wider research community as a whole, an application for the diachronic analysis of research corpora. We open source an easy-to-use tool coined: DRIFT, which allows researchers to track research trends and development over the years. The analysis methods are collated from well-cited research works, with a few of our own methods added for good measure. Succinctly put, some of the analysis methods are: keyword extraction, word clouds, predicting declining/stagnant/growing trends using Productivity, tracking bi-grams using Acceleration plots, finding the Semantic Drift of words, tracking trends using similarity, etc. To demonstrate the utility and efficacy of our tool, we perform a case study on the cs.CL corpus of the arXiv repository and draw inferences from the analysis methods. The toolkit and the associated code are available here.
In this paper, we describe an approach for modelling causal reasoning in natural language by detecting counterfactuals in text using multi-head self-attention weights. We use pre-trained transformer models to extract contextual embeddings and self-attention weights from the text. We show the use of convolutional layers to extract task-specific features from these self-attention weights. Further, we describe a fine-tuning approach with a common base model for knowledge sharing between the two closely related sub-tasks for counterfactual detection. We analyze and compare the performance of various transformer models in our experiments. Finally, we perform a qualitative analysis with the multi-head self-attention weights to interpret our models' dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.