Contrary to common expectations, the hydroxyl scavengers, carbonate and bicarbonate, are able to enhance the phototransformation by nitrate of a number of substituted phenols. Carbonate and bicarbonate, in addition to modifying the solution pH, are also able to induce a considerable formation of the carbonate radicals upon nitrate photolysis. The higher availability of less-reactive species than the hydroxyl radical would contribute to substantially enhance the photodegradation of the phenols/phenolates that are sufficiently reactive toward the carbonate radical. This phenomenon has a potentially important impact on the fate of the relevant compounds in surface waters. In contrast, the degradation of compounds that are not sufficiently reactive toward CO(3)(-*) is inhibited by carbonate and bicarbonate because of the scavenging of *OH.
This paper reports a simple model to describe the formation and reactivity of hydroxyl radicals in the whole column of surface freshwater systems. The model is based on empirical irradiation data and it is a function of the water chemical composition (the photochemically significant parameters Non-Purgeable Organic Carbon -NPOC-, nitrate, nitrite, carbonate and bicarbonate), the water body conformation best expressed as the average depth, and the water absorption spectrum in a simplified Lambert-Beer approach. The purpose is to derive the lifetime of dissolved molecules, due to the reaction with • OH, on the basis of their second-order rate constants with the hydroxyl radical. It is also proposed a simplified (and approximated) approach to simulate the absorption spectrum of water when the latter is not available, based on the value of the NPOC. Such a simulation can be useful when the model is adopted to describe a degradation scenario for a certain compound, without a direct link to a definite ecosystem. The model was applied to the lifetime of various pesticides in surface water bodies, and it suggested that the lifetime of a given compound can be very variable in different systems, even more than the lifetime of different compounds in the same water body. The variations of the chemical composition and of the depth of the water column are the main reasons for the reported finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.