Sankarabarani river basin gains significance due to presence of major industrial, agricultural, urban development and tourist related activities has influenced the water quality in the estuarine environment. Investigations about river water quality has been attempted but not more studies focus about the evaluation of groundwater discharge a significant process that connects groundwater and the coastal seawater have been attempted. For the present study, radium (226Ra) a naturally occurring isotope was measured at three locations and used as effective tracers for estimating the groundwater discharge along with nutrient inputs to the Bay. Groundwater samples representing north east monsoon (December, 2017) has been collected during tidal variation in three locations (Location A- away from the coast towards inland, Location B-intermediate between Location A and the coast and Location C-at the estuary). 226Ra mass balance calculated groundwater fluxes irrespective of tidal variations were 2.27×108 m3/d, 2.19×108 m3/d and 5.22×107m3/d for A, B and C locations respectively. The nutrients like Dissolved inorganic nitrogen (DIN), Dissolved inorganic Phosphate (DIP) and Dissolved Silica (DSi) were found to be influencing the coastal groundwater by contributing fluxes to the sea of about 679.33 T mol/day. The study suggests increasing radium and nutrient fluxes to the Bay altering the coastal ecosystems would result in surplus algal blooms creating hypoxia.
Submarine groundwater discharge (SGD) demarcated as a significant component of hydrological cycle found to discharge greater volumes of terrestrial fresh and recirculated seawater to the ocean associated with chemical constituents (nutrients, metals, and organic compounds) aided by downward hydraulic gradient and sediment-water exchange. Delineating SGD is of primal significance due to the transport of nutrients and contaminants due to domestic, industrial, and agricultural practices that influence the coastal water quality, ecosystems, and geochemical cycles. An attempt has been made to demarcate the SGD using thermal infrared images and radon-222 (222Rn) isotope. Thermal infrared images processed from LANDSAT-8 data suggest prominent freshwater fluxes with higher temperature anomalies noted in Cuddalore and Nagapattinam districts, and lower temperature noted along northern and southern parts of the study area suggest saline/recirculated discharge. Groundwater samples were collected along the coastal regions to analyze Radon and Physico-chemical constituents. Radon in groundwater ranges between 127.39 Bq m-3 and 2643.41 Bq m-3 with an average of 767.80 Bq m-3. Calculated SGD fluxes range between -1.0 to 26.5 with an average of 10.32 m day-1. Comparison of the thermal infrared image with physio-chemical parameters and Radon suggest fresh, terrestrial SGD fluxes confined to the central parts of the study area and lower fluxes observed along with the northern and southern parts of the study area advocate impact due to seawater intrusion and recirculated seawater influence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.