Although they correspond to an important fraction of the total area of mountain glaciers (33000 km 2 out of 546000 km 2 ), Himalayan glaciers and their mass balance are poorly sampled. For example, between 1977 and1999, the average area surveyed each year on the field was 6.8 km 2 only. No direct mass balance measurement is available after 1999. To contribute to fill this gap, we use remote sensing data to monitor glacier elevation changes and mass balances in the Spiti/Lahaul region (32.2°N, 77.6°E, Himachal Pradesh, Western Himalaya, India). The 2004 DEM is derived from two SPOT5 satellite optical images without any ground control points. This is achieved thanks to the good on-board geolocation of SPOT5 scenes and using SRTM elevations as a reference on the ice-free zones. Before comparison on glaciers, the two DEMs are analyzed on the stable areas surrounding the glaciers where no elevation change is expected. Two different biases are detected. A long wavelength bias affects the SPOT5 DEM and is correlated to an anomaly in the roll of the SPOT5 satellite. A bias is also observed as a function of altitude and is attributed to the SRTM dataset. Both biases are modeled and removed to permit unbiased comparison of the two DEM on the 915 km 2 ice-covered area digitized from an ASTER image.On most glaciers, a clear thinning is measured at low elevations, even on debris-covered tongues. Between 1999 and 2004, we obtain an overall specific mass balance of -0.7 to -0.85 m/a (water equivalent) depending on the density we use for the lost (or gained) material in the accumulation zone. This rate of ice loss is twice higher than the long-term (1977 to 1999) mass balance record for Himalaya indicating an increase in the pace of glacier wastage. To assess whether these ice losses are size-dependant, all glaciers were classified into three samples according to their areal extent. All three samples show ice loss, the loss being higher for glaciers larger than 30 km 2 . In the case of the benchmark Chhota Shigri glacier, a good agreement is found between our satellite observations and the mass balances measured on the field during hydrological years 2002-2003 and 2003-2004. Future studies using a similar methodology could determine whether similar ice losses have occurred in other parts of the Himalaya and may allow evaluation of the contribution of this mountain range to ongoing sea level rise.
Our paper develops a dynamic theory of alliances by examining certain outcome and process discrepancies that may emerge as the partners interact, highlighting issues that are especially relevant in knowledge intensive alliances, such as joint R&D or product development. Firms enter into these types of alliances to create economic value and to acquire knowledge to enhance their competencies. The degree to which the partners can realize their objectives is dependent on their absorptive capacities and the collaborative strategies adopted by the partners. Outcome and process discrepancies may emerge as collaboration unfolds. Outcome discrepancies concern the ability of the partners to achieve their economic and learning objectives. Process discrepancies relate to the partners' satisfaction with the pattern of interaction, and affect their feelings of psychological attachment to the relationship. How the partners assess and react to discrepancies shapes the developmental path of an alliance. The alliance flourishes in certain states but may collapse in others as the collaboration is subjected to environmental changes or shifts in the grand strategies of the partners. Guidelines for assessing and managing outcome and process discrepancies are suggested.
International audienceLittle is known about the Himalayan glaciers, although they are of particular interest in terms of future water supply, regional climate change and sea-level rise. In 2002, a long-term monitoring programme was started on Chhota Shigri Glacier (32.2°N, 77.5°E; 15.7 km2, 6263-4050 m a.s.l., 9 km long) located in Lahaul and Spiti Valley, Himachal Pradesh, India. This glacier lies in the monsoon-arid transition zone (western Himalaya) which is alternately influenced by Asian monsoon in summer and the mid-latitude westerlies in winter. Here we present the results of a 4 year study of mass balance and surface velocity. Overall specific mass balances are mostly negative during the study period and vary from a minimum value of -1.4 m w.e. in 2002/03 and 2005/06 (equilibrium-line altitude (ELA) ∼5180 m a.s.l.) to a maximum value of +0.1 m w.e. in 2004/05 (ELA 4855 m a.s.l.). Chhota Shigri Glacier seems similar to mid-latitude glaciers, with an ablation season limited to the summer months and a mean vertical gradient of mass balance in the ablation zone (debris-free part) of 0.7 m w.e. (100 m)-1, similar to those reported in the Alps. Mass balance is strongly dependent on debris cover, exposure and the shading effect of surrounding steep slopes
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.