Aim:Present investigation was conducted to isolate and characterize bacteriophages with lytic activity against common bacterial pathogens.Materials and Methods:A total of 60 samples of animal waste disposal from cattle (42) and buffalo (18) farms were collected from three different strata, i.e., top, mid, and bottom of collection tank. Samples were primarily subjected to rapid detection methods, and then isolation of phage was done by double agar layer method using Bacillus subtilis (BsH) and Escherichia coli (EH) as host system. Phages were characterized on the basis of plaque morphology, temperature, pH susceptibility, and host range.Results:Recovery of phages was higher from dairy cattle farm waste (78.57%) as compared to buffalo farm waste (72.22%) and bottom layer of tank showed maximum recovery. Bacillus subtilis (91%) supported the growth of more phages as compared to E. coli (9%). Three different phage morphotypes were observed each against Bacillus subtilis (BsHR1, BsHR2, and BsHR3) and E. coli (EHR1, EHR2, and EHR3). Mean phage titer of above six phage isolates ranged between 3×1010 and 5×1012 plaque forming units/ml. Viability of phages was by, and large unaffected at 70°C within 2-3 min, and phage isolates were completely inactivated below pH 3 and above 11. Coliphage EHR1 had widest host range followed by BsHR1 and BsHR2 while EHR2, EHR3, and BsHR3 had low lytic activity.Conclusion:It could be concluded from the present study that the Bacillus and Coli phage has wide host range and thus exhibits the potential to be used as drug substitute tool against common bacterial pathogens.
Aim:The present study was conducted to investigate the effect of species, breed and age on bacterial load in fresh and frozen semen of Cattle and Buffalo bull.Materials and Methods:Present study covered 56 cow and 10 buffalo bulls stationed at Central Semen Station Anjora, Durg (Chhattisgarh). Impact of breeds on bacterial load in semen was assessed using six breeds of cattle viz. Sahiwal, Gir, Red Sindhi, Tharparkar, Jersey and Holstein Friesian (HF) cross. Cow bulls were categorized into four different groups based on their age (<4 years, 4-5 years, 5-6 years and > 6 years) to study variation among age groups. Bacterial load was measured in fresh and frozen semen samples from these bulls using the standard plate count (SPC) method and count was expressed as colony forming unit (CFU) per ml of semen.Results:Higher bacterial load was reported in fresh (2.36 × 104 ± 1943 CFU/ml) and frozen (1.00 × 10 ± 90 CFU/ml) semen of cow bulls as compared to buffalo bulls (1.95 × 104 ± 2882 and 7.75 × 102 ± 160 CFU/ml in fresh and frozen semen, respectively). Jersey bull showed significantly higher bacterial count (p < 0.05) both in fresh (4.07 × 104 ± 13927 CFU/ml) and frozen (1.92 × 103 ± 178 CFU/ml) semen followed by HF cross, Sahiwal, Gir, Red Sindhi and Tharparkar bull. Bulls aged < 4 years and more than 6 years yielded increased bacterial load in their semen. Although a minor variation was reported between species and among age groups, no significant differences were measured.Conclusion:Bacterial load in semen did not differ significantly between species and age groups; however significant variation was reported among different breeds. Bulls of Jersey breed showed significantly higher bacterial load in semen as compared to the crossbred and indigenous bull.
Aim: The purpose of this study was to isolate and characterize the Mannheimia haemolytica and Pasteurella multocida from blood, nasal discharge, and lung tissue of pneumonic goats. Materials and Methods: A total of 14 goats were investigated for pneumonic pasteurellosis. Of 14 goats, nasal swabs and blood samples were collected from 10 clinically diseased animals. Moreover, lung tissue and heart blood samples were collected during necropsy of four goats died with pneumonia. All the samples were processed for the isolation of M. haemolytica and P. multocida in the laboratory. Bacterial isolates were identified by cultural and biochemical characters and 16S rRNA sequence analysis. All the isolates were subjected to susceptibility testing using commonly used antimicrobials. M. haemolytica isolates were characterized by PHSSA gene detection. P. multocida isolates were characterized by KMT1 gene detection and capsule typing. Results: On necropsy of dead goats, the pneumonia was characterized as acute fibrinous bronchopneumonia. Bacterial culture revealed the isolation of M. haemolytica (7) and P. multocida (5) of 10 clinical cases. Moreover, M. haemolytica and P. multocida were coisolated from two of the lung tissues. Furthermore, one of the other two lung tissues showed the isolation of M. haemolytica while the other showed recovery of P. multocida. Bacterial isolates were specifically identified by the 16S rRNA sequence analysis. The isolates showed reduced susceptibility to β-lactams, aminoglycosides, and fluoroquinolones . Moreover, the PHSSA and KMT1 genes were specifically detected among M. haemolytica, and P. multocida isolates, respectively. All P. multocida isolates belonged to serogroup A. Conclusion: The present study reported an occurrence of pneumonic pasteurellosis caused by M. haemolytica and P. multocida in a goat flock.
Aim:The present investigation was conducted to locate the critical sources of bacterial contamination and to evaluate the standard sanitation protocol so as to improve the hygienic conditions during collection, evaluation, and processing of bull semen in the Semen Station.Materials and Methods:The study compared two different hygienic procedures during the collection, evaluation and processing of semen in Central Semen Station, Anjora, Durg. Routinely used materials including artificial vagina (AV) inner liner, cone, semen collection tube, buffer, extender/diluter, straws; and the laboratory environment like processing lab, pass box and laminar air flow (LAF) cabinet of extender preparation lab, processing lab, sealing filling machine, and bacteriological lab were subjected to bacteriological examination in two phases of study using two different sanitary protocols. Bacterial load in above items/environment was measured using standard plate count method and expressed as colony forming unit (CFU).Results:Bacterial load in a laboratory environment and AV equipments during two different sanitary protocol in present investigation differed highly significantly (p<0.001). Potential sources of bacterial contamination during semen collection and processing included laboratory environment like processing lab, pass box, and LAF cabinets; AV equipments, including AV Liner and cone. Bacterial load was reduced highly significantly (p<0.001) in AV liner (from 2.33±0.67 to 0.50±0.52), cone (from 4.16±1.20 to 1.91±0.55), and extender (from 1.33±0.38 to 0) after application of improved practices of packaging, handling, and sterilization in Phase II of study. Glasswares, buffers, and straws showed nil bacterial contamination in both the phases of study. With slight modification in fumigation protocol (formalin @600 ml/1000 ft3), bacterial load was significantly decreased (p<0.001) up to 0-6 CFU in processing lab (from 6.43±1.34 to 2.86±0.59), pass box (from 12.13±2.53 to 3.78±0.79), and nil bacterial load was reported in LAFs.Conclusion:Appropriate and careful management considering critical points step by step starting right from collection of semen to their processing can significantly minimize bacterial contamination.
Aim:The present investigation was conducted to isolate and characterize Salmonella Gallinarum from an outbreak of fowl typhoid in layer birds.Materials and Methods:Clinically ill and dead layer birds from an outbreak were investigated. History, clinical signs, and postmortem lesions were suggestive of fowl typhoid. Postmortem samples including heart blood, intestinal contents, pieces of ovary, and liver were collected and processed immediately for bacterial culture, serotyping and antibiotic sensitivity tests. Isolates were further screened for the presence of extended spectrum beta lactamase (ESBL) (blaTEM) gene by polymerase chain reaction.Results:On the basis of cultural, staining and biochemical characteristics; three bacterial isolates were confirmed as S. Gallinarum. On serotyping, somatic antigen O: 9 and 12 with nonflagellated antigen were detected in all three isolates. Isolates were intermediate sensitive to amoxycillin, amoxyclav, gentamicin and ciprofloxacin and resistant to most of the antibiotics including chloramphenicol, ampicillin, ceftazidime, cefexime, cefepime, azithromycin, nalidixin, tetracycline, oxytetracycline, and streptomycin. Two isolates were found to harbor ESBL (blaTEM) gene.Conclusion:Beta lactamase producer S. Gallinarum was confirmed as cause of increased mortality in layer birds during present investigation. Existence of multi drug resistant Salmonella poses serious threat to poultry industry in Chhattisgarh.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.