We describe a model of visual processing in which feedback connections from a higher- to a lower-order visual cortical area carry predictions of lower-level neural activities, whereas the feedforward connections carry the residual errors between the predictions and the actual lower-level activities. When exposed to natural images, a hierarchical network of model neurons implementing such a model developed simple-cell-like receptive fields. A subset of neurons responsible for carrying the residual errors showed endstopping and other extra-classical receptive-field effects. These results suggest that rather than being exclusively feedforward phenomena, nonclassical surround effects in the visual cortex may also result from cortico-cortical feedback as a consequence of the visual system using an efficient hierarchical strategy for encoding natural images.
In the first large study of its kind, we quantified changes in electrocorticographic signals associated with motor movement across 22 subjects with subdural electrode arrays placed for identification of seizure foci. Patients underwent a 5-7 d monitoring period with array placement, before seizure focus resection, and during this time they participated in the study. An interval-based motor-repetition task produced consistent and quantifiable spectral shifts that were mapped on a Talairach-standardized template cortex. Maps were created independently for a high-frequency band (HFB) (76 -100 Hz) and a low-frequency band (LFB) (8 -32 Hz) for several different movement modalities in each subject. The power in relevant electrodes consistently decreased in the LFB with movement, whereas the power in the HFB consistently increased. In addition, the HFB changes were more focal than the LFB changes. Sites of power changes corresponded to stereotactic locations in sensorimotor cortex and to the results of individual clinical electrical cortical mapping. Sensorimotor representation was found to be somatotopic, localized in stereotactic space to rolandic cortex, and typically followed the classic homunculus with limited extrarolandic representation.
To describe phenomena that occur at different time scales, computational models of the brain must incorporate different levels of abstraction. At time scales of approximately 1/3 of a second, orienting movements of the body play a crucial role in cognition and form a useful computational level – more abstract than that used to capture natural phenomena but less abstract than what is traditionally used to study high-level cognitive processes such as reasoning. At this “embodiment level,” the constraints of the physical system determine the nature of cognitive operations. The key synergy is that at time scales of about 1/3 of a second, the natural sequentiality of body movements can be matched to the natural computational economies of sequential decision systems through a system of implicit reference called deictic in which pointing movements are used to bind objects in the world to cognitive programs. This target article focuses on how deictic bindings make it possible to perform natural tasks. Deictic computation provides a mechanism for representing the essential features that link external sensory data with internal cognitive programs and motor actions. One of the central features of cognition, working memory, can be related to moment-by-moment dispositions of body features such as eye movements and hand movements.
Predictive coding is a unifying framework for understanding redundancy reduction and efficient coding in the nervous system. By transmitting only the unpredicted portions of an incoming sensory signal, predictive coding allows the nervous system to reduce redundancy and make full use of the limited dynamic range of neurons. Starting with the hypothesis of efficient coding as a design principle in the sensory system, predictive coding provides a functional explanation for a range of neural responses and many aspects of brain organization. The lateral and temporal antagonism in receptive fields in the retina and lateral geniculate nucleus occur naturally as a consequence of predictive coding of natural images. In the higher visual system, predictive coding provides an explanation for oriented receptive fields and contextual effects as well as the hierarchical reciprocally connected organization of the cortex. Predictive coding has also been found to be consistent with a variety of neurophysiological and psychophysical data obtained from different areas of the brain. WIREs Cogni Sci 2011 2 580-593 DOI: 10.1002/wcs.142 For further resources related to this article, please visit the WIREs website.
Imagery of motor movement plays an important role in learning of complex motor skills, from learning to serve in tennis to perfecting a pirouette in ballet. What and where are the neural substrates that underlie motor imagery-based learning? We measured electrocorticographic cortical surface potentials in eight human subjects during overt action and kinesthetic imagery of the same movement, focusing on power in “high frequency” (76–100 Hz) and “low frequency” (8–32 Hz) ranges. We quantitatively establish that the spatial distribution of local neuronal population activity during motor imagery mimics the spatial distribution of activity during actual motor movement. By comparing responses to electrocortical stimulation with imagery-induced cortical surface activity, we demonstrate the role of primary motor areas in movement imagery. The magnitude of imagery-induced cortical activity change was ∼25% of that associated with actual movement. However, when subjects learned to use this imagery to control a computer cursor in a simple feedback task, the imagery-induced activity change was significantly augmented, even exceeding that of overt movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.