Adiabatic superconducting devices are promising candidates to develop high-speed/low-power electronics. Advances in physical technology must be matched with a systematic development of comprehensive design and simulation tools to bring superconducting electronics to a commercially viable state. Being the technology fundamentally different from CMOS, new challenges are posed to design automation tools: library cells are controlled by multi-phase clocks, they implement the majority logic function, and they have limited fanout. We present a product-level RTL-to-GDSII flow for the design of Adiabatic Quantum-Flux-Parametron (AQFP) electronic circuits, with a focus on the special techniques used to comply with these challenges. In addition, we demonstrate new optimization opportunities for graph matching, resynthesis, and buffer/splitter insertion, improving the state-of-the-art.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.