BackgroundType 2 diabetes mellitus (T2DM) is a major public health burden. Self-management of diabetes including maintaining a healthy lifestyle is essential for glycemic control and to prevent diabetes complications. Mobile-based health data can play an important role in the forecasting of blood glucose levels for lifestyle management and control of T2DM.ObjectiveThe objective of this work was to dynamically forecast daily glucose levels in patients with T2DM based on their daily mobile health lifestyle data including diet, physical activity, weight, and glucose level from the day before.MethodsWe used data from 10 T2DM patients who were overweight or obese in a behavioral lifestyle intervention using mobile tools for daily monitoring of diet, physical activity, weight, and blood glucose over 6 months. We developed a deep learning model based on long short-term memory–based recurrent neural networks to forecast the next-day glucose levels in individual patients. The neural network used several layers of computational nodes to model how mobile health data (food intake including consumed calories, fat, and carbohydrates; exercise; and weight) were progressing from one day to another from noisy data.ResultsThe model was validated based on a data set of 10 patients who had been monitored daily for over 6 months. The proposed deep learning model demonstrated considerable accuracy in predicting the next day glucose level based on Clark Error Grid and ±10% range of the actual values.ConclusionsUsing machine learning methodologies may leverage mobile health lifestyle data to develop effective individualized prediction plans for T2DM management. However, predicting future glucose levels is challenging as glucose level is determined by multiple factors. Future study with more rigorous study design is warranted to better predict future glucose levels for T2DM management.
Estimation of black-box functions often requires evaluating an extensive number of expensive noisy points. Learning algorithms can actively compare the similarity between the evaluated and unevaluated points to determine the most informative subsequent points for efficient estimation of expensive functions in a sequential procedure. In this paper, we propose an active learning methodology based on the integration of Laplacian regularization and active learning-Cohn (ALC) measure for identification of the most informative points for efficient estimation of noisy black-box functions using Gaussian processes. We propose two simple greedy search algorithms for sequential optimization of the tuning parameters and determination of subsequent points based on the information from the previously evaluated points. We also enhance the graph Laplacian with the information of both the predictor and response variables to capture the similarity between the points more effectively. The proposed methodology is particularly suited for problems involving estimation of expensive black-box functions with a high level of noise and plenty of unevaluated points. Using a case study for analysis of the kinematics of pitching in baseball as well as simulation experiments, we demonstrate the performance of the proposed methodology against existing methods in the literature in terms of estimation error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.