The number of no-shows has a significant impact on the revenue, cost and resource utilization for almost all healthcare systems. In this study we develop a hybrid probabilistic model based on logistic regression and empirical Bayesian inference to predict the probability of no-shows in real time using both general patient social and demographic information and individual clinical appointments attendance records. The model also considers the effect of appointment date and clinic type. The effectiveness of the proposed approach is validated based on a patient dataset from a VA medical center. Such an accurate prediction model can be used to enable a precise selective overbooking strategy to reduce the negative effect of no-shows and to fill appointment slots while maintaining short wait times.
BackgroundType 2 diabetes mellitus (T2DM) is a major public health burden. Self-management of diabetes including maintaining a healthy lifestyle is essential for glycemic control and to prevent diabetes complications. Mobile-based health data can play an important role in the forecasting of blood glucose levels for lifestyle management and control of T2DM.ObjectiveThe objective of this work was to dynamically forecast daily glucose levels in patients with T2DM based on their daily mobile health lifestyle data including diet, physical activity, weight, and glucose level from the day before.MethodsWe used data from 10 T2DM patients who were overweight or obese in a behavioral lifestyle intervention using mobile tools for daily monitoring of diet, physical activity, weight, and blood glucose over 6 months. We developed a deep learning model based on long short-term memory–based recurrent neural networks to forecast the next-day glucose levels in individual patients. The neural network used several layers of computational nodes to model how mobile health data (food intake including consumed calories, fat, and carbohydrates; exercise; and weight) were progressing from one day to another from noisy data.ResultsThe model was validated based on a data set of 10 patients who had been monitored daily for over 6 months. The proposed deep learning model demonstrated considerable accuracy in predicting the next day glucose level based on Clark Error Grid and ±10% range of the actual values.ConclusionsUsing machine learning methodologies may leverage mobile health lifestyle data to develop effective individualized prediction plans for T2DM management. However, predicting future glucose levels is challenging as glucose level is determined by multiple factors. Future study with more rigorous study design is warranted to better predict future glucose levels for T2DM management.
Hospital readmissions present an increasingly important challenge for healthcare organizations. Readmissions are expensive and often unnecessary, putting patients at risk and costing $15 billion annually in the US alone. Currently, 17% of Medicare patients are readmitted to a hospital within 30 days of initial discharge with readmissions typically being more expensive than the original visit to the hospital. Recent legislation penalizes organizations with a high readmission rate. The medical literature conjectures that many readmissions can be avoided or mitigated by post-discharge monitoring. To develop a good monitoring plan it is critical to anticipate the timing of a potential readmission and to effectively monitor the patient for readmission causing conditions based on that knowledge. This research develops new methods to empirically generate an individualized estimate of the time to readmission density function and then uses this density to optimize a post-discharge monitoring schedule and staffing plan to support monitoring needs. Our approach integrates classical prediction models with machine learning and transfer learning to develop an empirical density that is personalized to each patient. We then transform an intractable monitoring plan optimization with stochastic discharges and health state evolution based on delay-time models into a weakly-coupled network flow model with tractable subproblems after applying a new pruning method that leverages the problem structure. Using this multi-methodologic approach on two large inpatient datasets, we show that optimal readmission prediction and monitoring plans can identify and mitigate 40%-70% of readmissions before they generate an emergency readmission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.