Design of an impeccable drug delivery product normally encompasses multiple objectives. For decades, this task has been attempted through trial and error, supplemented with the previous experience, knowledge, and wisdom of the formulator. Optimization of a pharmaceutical formulation or process using this traditional approach involves changing one variable at a time. Using this methodology, the solution of a specific problematic formulation characteristic can certainly be achieved, but attainment of the true optimal composition is never guaranteed. And for improvement in one characteristic, one has to trade off for degeneration in another. This customary approach of developing a drug product or process has been proved to be not only uneconomical in terms of time, money, and effort, but also unfavorable to fix errors, unpredictable, and at times even unsuccessful. On the other hand, the modern formulation optimization approaches, employing systematic Design of Experiments (DoE), are extensively practiced in the development of diverse kinds of drug delivery devices to improve such irregularities. Such systematic approaches are far more advantageous, because they require fewer experiments to achieve an optimum formulation, make problem tracing and rectification quite easier, reveal drug/polymer interactions, simulate the product performance, and comprehend the process to assist in better formulation development and subsequent scale-up. Optimization techniques using DoE represent effective and cost-effective analytical tools to yield the "best solution" to a particular "problem." Through quantification of drug delivery systems, these approaches provide a depth of understanding as well as an ability to explore and defend ranges for formulation factors, where experimentation is completed before optimization is attempted. The key elements of a DoE optimization methodology encompass planning the study objectives, screening of influential variables, experimental designs, postulation of mathematical models for various chosen response characteristics, fitting experimental data into these model(s), mapping and generating graphic outcomes, and design validation using model-based response surface methodology. The broad topic of DoE optimization methodology is covered in two parts. Part I of the review attempts to provide thought-through and thorough information on diverse DoE aspects organized in a seven-step sequence. Besides dealing with basic DoE terminology for the novice, the article covers the niceties of several important experimental designs, mathematical models, and optimum search techniques using numeric and graphical methods, with special emphasis on computer-based approaches, artificial neural networks, and judicious selection of designs and models.
The purpose of this review is to give an insight into the considerable potential of lecithin organogels (LOs) in the applications meant for topical drug delivery. LOs are clear, thermodynamically stable, viscoelastic, and biocompatible jelly-like phases, chiefly composed of hydrated phospholipids and appropriate organic liquid. These systems are currently of interest to the pharmaceutical scientist because of their structural and functional benefits. Several therapeutic agents have been formulated as LOs for their facilitated transport through topical route (for dermal or transdermal effect), with some very encouraging results. The improved topical drug delivery has mainly been attributed to the biphasic drug solubility, the desired drug partitioning, and the modification of skin barrier function by the organogel components. Being thermodynamically stable, LOs are prepared by spontaneous emulsification and therefore possess prolonged shelf life. The utility of this novel matrix as a topical vehicle has further increased owing to its very low skin irritancy potential. Varied aspects of LOs viz formation, composition, phase behavior, and characterization have been elaborated, including a general discussion on the developmental background. Besides a comprehensive update on the topical applications of lecithin organogels, the review also includes a detailed account on the mechanistics of organogelling.
Muscle wasting and weakness occur frequently in patients with chronic renal failure. The mechanism(s) by which these abnormalities occur is unclear. We hypothesized that such findings were due to defective muscle protein synthesis. We measured synthetic rates of mixed muscle proteins, myosin heavy chain, and mitochondrial proteins in serial muscle biopsy samples during a continuous infusion of L[1-(13)C]leucine from 12 patients with chronic renal failure and 10 healthy control subjects under identical study conditions. Patients with chronic renal failure have significantly lower synthetic rates of mixed muscle proteins and myosin heavy chain (27 and 37% reductions, respectively, P < 0.05 and P < 0.02). Significant declines in the synthetic rates of muscle mitochondrial protein (27%) (P < 0.05), muscle cytochrome c-oxidase activity (42%) (P < 0.007), and citrate synthase (27%) (P < 0.007) were also observed in patients with chronic renal failure. The synthetic rates of muscle proteins and activity of mitochondrial enzymes were negatively correlated to the severity of renal failure. These results indicate that in chronic renal failure there is a decrease in the synthesis of muscle contractile and mitochondrial proteins and a decrease in muscle mitochondrial oxidative enzymes. Reduced synthetic rate of several muscle proteins is the likely biochemical basis of muscle loss and muscle weakness in people with chronic renal failure.
Nimesulide, a non-steroidal anti-inflammatory drug, was incorporated into multilamellar liposomes to improve its performance on topical administration. The drug was loaded onto liposomes employing thin film hydration technique. Various process and formulation variables were investigated to obtain the liposomal products of desired quality. Liposomes were monitored for percent drug entrapment, after separating the unentrapped drug by mini column centrifugation, for vesicular properties (such as size distribution profile, morphological attributes and agglomeration tendency), drug diffused through synthetic semipermeable membrane, and drug leakage. Systematic optimization studies were carried out using 3(2) factorial design to select the optimized liposomal composition with reference to percent drug entrapment, drug diffusion and leakage. The optimized batch of liposomes was subjected to drug permeation and drug retention studies employing rat skin and human cadaver skin. In comparison to methanolic solution of pure nimesulide, liposomal formulations were found to retain higher amounts of nimesulide in the skin. Anti-inflammatory studies, using carragenan-induced rat paw edema model, indicated significantly better performance of liposomally entrapped nimesulide in comparison to the marketed gel formulation and the Carbopol gel containing nimesulide.
It is concluded that development of a successful controlled-release delivery system for these drugs will obviate the need of repeated administration, which in turn will improve patient compliance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.