This review summarizes some basic properties and distribution of angiotensin I converting enzyme (ACE). ACE is one of several biologically important ectoproteins that exists in both membrane-bound and soluble forms. Localized on the surface of various cells, ACE is inserted at the cell membrane via its carboxyl terminus. Human plasma ACE originates from endothelial cells while other body fluids may contain ACE that originates from epithelial, endothelial or germinal cells. The two isoforms of ACE, the two-domain somatic form and the single domain germinal form, convert angiotensin I to angiotensin II, and metabolize kinins and many other biologically active peptides, including substance P, chemotactic peptide and opioid peptides. The broad spectrum of substrates for ACE and its wide distribution throughout the body indicates that this enzyme, in addition to an important role in cardiovascular homeostasis, may be involved in additional physiologic processes such as neovascularization, fertilization, atherosclerosis, kidney and lung fibrosis, myocardial hypertrophy, inflammation and wound healing. Future research should explore the possible functions of tissue ACE and its systemic role as a pressor agent. ACE inhibitors have achieved widespread use in the treatment of hypertension and the protection of end-organ damage in cardiovascular and renal diseases. Potential problems related to side effects and compliance of such therapy need to be addressed. A safer way of producing therapeutic effects is promised by the delivery of the ACE antisense sequences by a vector producing a permanent inhibition of ACE and long-term control of blood pressure in hypertensive patients.
This review summarizes physiology of circulating and local renin-angiotensin system (RAS), enzymatic properties and mechanism of action of angiotensin I converting enzyme inhibitors (ACEIs) on RAS, and implications of ACEIs in anesthetic management of patients treated with these drugs. ACEIs, through their effect on RAS, may improve cardiovascular functions, pulmonary dynamics, and body fluid homeostasis. Thus, ACEIs have become an integral part of management of patients with hypertension, congestive heart failure (CHF) and chronic renal disease. ACEIs, due to differences in their chemical structure, exert different pharmacological actions and can have protective or occasional damaging effects on different organs. The anesthesiologists are commonly involved in the management of patients treated with ACEIs. Thus, the role of ACEIs and their possible interaction with anesthetic agents must be an integral part of clinical decision-making during anesthesia Hemodynamic variation during anesthesia is mainly related to specific effects of anesthetic agents on sympathetic nervous system. Those with preoperative fasting, volume depletion and extended sympathetic blockade can have reduced vascular capacitance resulting in decreased venous return, reduced cardiac output and severe arterial hypotension. Angiotensin II (ANG2) a potent vasoconstrictor may counterbalance such hypotensive effect. During ACE inhibition ANG2 cannot counterbalance this hypotension. Thus, induction of anesthesia may cause severe hypotension in hypovolemic patients specifically in those receiving diuretics as a complement to ACEIs. Recent advances in RAS and the pharmacology of ACEIs have identified some predisposing factors and risks associated with anesthesia in patients treated with ACEIs. Practitioners should be vigilant, and readily have vasopressors, necessary fluids and other resuscitative measures for treatment of unexpected hemodynamic instability during anesthesia and surgery.
Aluminium may have an important role in the aetiology/pathogenesis/precipitation of Alzheimer's disease. Because green tea (Camellia sinensis L.) reportedly has health-promoting effects in the central nervous system, we evaluated the effects of green tea leaf extract (GTLE) on aluminium chloride (AlCl3 ) neurotoxicity in rats. All solutions were injected into the cornu ammonis region 1 hippocampal region. We measured the performance of active avoidance (AA) tasks, various enzyme activities and total glutathione content (TGC) in the forebrain cortex (FbC), striatum, basal forebrain (BFb), hippocampus, brain stem and cerebellum. AlCl3 markedly reduced AA performance and activities of cytochrome c oxidase (COX) and acetylcholinesterase (AChE) in all regions. It decreased TGC in the FbC, striatum, BFb, hippocampus, brain stem and cerebellum, and increased superoxide dismutase activity in the FbC, cerebellum and BFb. GTLE pretreatment completely reversed the damaging effects of AlCl3 on AA and superoxide dismutase activity, markedly corrected COX and AChE activities, and moderately improved TGC. GTLE alone increased COX and AChE activities in almost all regions. GTLE reduces AlCl3 neurotoxicity probably via antioxidative effects and improves mitochondrial and cholinergic synaptic functions through the actions of (-)-epigallocatechin gallate and (-)-epicatechin, compounds most abundantly found in GTLE. Our results suggest that green tea might be beneficial in Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.