Nanomaterials have allowed significant breakthroughs in bio-engineering and medical fields. In the present paper a holistic assessment on diverse biocompatible nanocomposites are studied. Their compatibility with advanced fabrication methods such as additive manufacturing for the design of functional medical implants is also critically reviewed. The significance of nanocomposites and processing techniques is also envisaged comprehensively in regard with the needs and futures of implantable medical device industries.
Materials and processes used for medical applications should have specific attributes. For bone repair and reconstruction, controlled open porosity and osteoconductivity are essential apart from mechanical strength and biocompatibility. Several forms of calcium phosphates are often used for these applications, considering properties similar to bone minerals, but often in combinations with other biopolymers. Polymethyl methacrylate (PMMA) and b-tricalcium phosphate (b-TCP) are identified as a suitable combination for the current research, considering specific properties both individually and in combinations, when processed by different means for specific medical applications. Specific responses of the biocomposite material formed by mechanically mixing the two materials in the powder form to selective laser sintering (SLS) under varying conditions are investigated. The results indicate the suitability of the material system for SLS, while controlled porosity and mechanical property combinations are possible by optimizing material composition and process parameters.
Polymethylmethacrylate (PMMA) is a synthetic resin, widely used for bio-medical applications and is usually mixed with some other ingredients to form a soft substrate, which gradually hardens. Medical implants and other products of different shapes are generated either by moulding while it is still soft or by machining further to hardening. While these methods limit the freedom to achieve the much needed geometrical complexities, porosity also gets adversely affected. Rapid prototyping or additive manufacturing techniques allow for complex shapes to be easily produced together with a degree of control over the porosity. Though fused deposition modelling was attempted earlier with PMMA, more promising approaches such as selective laser sintering attained very little attention in this regard. In particular, the mechanism of material consolidation and the effects of significant process parameters on critical responses need sufficient attention, and this paper attempts this by experimental means.
The most common method to fabricate both simple and complex structures in the additive manufacturing process is fused deposition modeling (FDM). Many researchers have studied the strengthening of FDM components by adding short carbon fibers (CF) or by reinforcing solid carbon fiber rods. In the current research, we sought to enhance the mechanical properties of FDM components by adding bioinspired solid CF rods during the fabrication process. An effective bonding interface of bioinspired CF rods and polylactic acid (PLA) was achieved by triangular interlocking sutures and by employing synthetic glue as the binding agent. In particular, the tensile strength of solid CF rod reinforced PLA samples was studied. Critical parameters such as layer thickness, extruder temperature, extruder speed, and shell thickness were considered for optimization. Significant process parameters were identified through leverage plots using the response surface methodology (RSM). The optimum parameters were found to be layer thickness of 0.04 mm, extruder temperature of 215 °C, extruder speed of 60 mm/s, and shell thickness of 1.2 mm. The results revealed that the bioinspired solid CF rod reinforced PLA (CFRPLA) composite exhibited a tensile strength of 82.06 MPa, which was approximately three times higher than the pure PLA (28 MPa, 66% lower than CFRPLA), acrylonitrile butadiene styrene (ABS) (28 MPa, 66% lower than CFRPLA), polyethylene terephthalate glycol (PETG) (34 MPa, 60% lower than CFRPLA), and nylon (34 MPa, 60% lower than CFRPLA) samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.