Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids.Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
The properties of cell membranes are determined mostly by the types of fatty acids that they contain. Bodhicharla et al. report that a key regulator of membrane fluidity, the PAQR-2/IGLR-2 protein complex...
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
5-Fluoro-2'-deoxyuridine (FUdR) is a DNA synthesis inhibitor commonly used to sterilize Caenorhabditis elegans in order to maintain a synchronized aging population of nematodes, without contamination by their progeny, in lifespan experiments. All somatic cells in the adult nematode are post-mitotic and therefore do not require nuclear DNA synthesis. However, mitochondrial DNA (mtDNA) replicates independently of the cell cycle and thus represents a potential target for FUdR toxicity. Inhibition of mtDNA synthesis can lead to mtDNA depletion, which is linked to a number of diseases in humans. Furthermore, alterations in mitochondrial biology can affect lifespan in C. elegans. We characterized the effects of FUdR exposure on mtDNA and nuclear DNA (nucDNA) copy numbers, DNA damage, steady state ATP levels, nematode size, mitochondrial morphology, and lifespan in the germ line deficient JK1 107 glp-1(q244) and PE255 glp-4(bn2) strains. Lifespan was increased very slightly by 25 µM FUdR, but was reduced by 400 µM. Both concentrations reduced mtDNA and nucDNA copy numbers, but did not change their ratio. There was no effect of FUdR on mitochondrial morphology. Although both concentrations of FUdR resulted in smaller sized animals, changes to steady-state ATP levels were either not detected or restricted to the higher dose and/or later timepoints, depending on the method employed and strain tested. Finally, we determined the half-life of mtDNA in somatic cells of adult C. elegans to be between 8 and 13 days; this long half-life very likely explains the small or undetectable impact of FUdR on mitochondrial endpoints in our experiments. We discuss the relative pitfalls associated with using FUdR and germline deficient mutant strains as tools for the experimental elimination of progeny.
The neural protein α-synuclein aggregates both in vivo and in vitro to form insoluble fibrils that are involved in Parkinson’s disease pathogenesis. We have generated α-synuclein/fluorescent-protein fusion constructs overexpressed in muscle cells of the nematode, Caenorhabdtis elegans. Green Fluorescent Protein (GFP) variants, Cerulean (C) or Venus (V), were fused to the C-terminus of human α-synuclein (S); the resultant fusion genes were designated SV and SC, plus a CV fusion as well as S, C and V singly. The aggregation behavior of the purified fusion proteins (expressed in E. coli) will be described elsewhere. These constructs were fused to a C. elegans unc-54 myosin promoter, and integrated transgenic lines generated by microinjection, γ-irradiation, and outcrossing of fluorescent progeny. All transgenic lines expressing α-synuclein showed significant reductions (p < 0.05) in lifespan, motility and pharyngeal pumping, as compared to wild-type worms or lines expressing CFP and/or YFP only. We showed that CFP and YFP labels colocalised in granular inclusions throughout the body wall in transgenic lines expressing both SC and SV fusions (SC+SV), whereas SV+C worms displayed YFP-labelled inclusions on a diffuse CFP background. These findings implied that the α-synuclein moieties of these fusion proteins still aggregated together in vivo, whereas CFP or YFP moieties alone did not. This in turn suggested that Foerster Resonanace Energy Transfer (FRET) between CFP and YFP labels in α-synuclein aggregates could allow the extent of aggregation to be quantified. Accordingly, we also showed that net FRET signals increased 2-fold between L4 and adult SC+SV worms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.