Reversible logic synthesis is one of the best suited ways which act as the intermediate step for synthesising Boolean functions on quantum technologies. For a given Boolean function, there are multiple possible intermediate representations (IRs), based on functional abstraction, e.g. truth table, decision diagrams or circuit abstraction, e.g. binary decision diagram (BDD), and-inverter graph (AIG) and majority inverter graph (MIG). These IRs play an important role in building circuits as the choice of an IR directly impacts on cost parameters of the design. In the authors' work, they are analysing the effects of different graphbased IRs (BDD, AIG and MIG) and their usability in making efficient circuit realisations. Although applications of BDDs as an IR to represent large functions has already been studied, here they are demonstrating a synthesis scheme by taking AIG and MIG as IRs and making a comprehensive comparative analysis over all these three graph-based IRs. In experimental evaluation, it is being observed that for small functions BDD gives more compact circuits than the other two IRs but when the input size increases, then MIG as IR makes substantial improvements in cost parameters as compared with BDD by reducing quantum cost by 39% on an average. Along with the experimental results, a detailed analysis over the different IRs is also included to find their easiness in designing circuits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.