Background: Quinazolines and quinazolinones constitute a major class of biologically active molecules both from natural and synthetic sources. We will limit this review to compounds possessing the 4(3H)-quinazolinone skeleton, which is found in compounds displaying significant biological and pharmacological properties. The molecular design of potential lead compound is still a key line of approach for the discovery and development of new chemical entities. A combination of two or more chemical moieties into one is a common approach of operation and this can most likely result in the improvement of pharmacological activity and removal of unwanted side effects. Methods: We undertake search for peer-reviewed and research literature on quinazolinone moiety using different tools of literature survey. The quality of superior papers was assess using standard tools. The distinctiveness of screened papers was shorted and high-quality content was reorganiz and written in own language. Results: The review will be expressed in two main sections, the first section will be related to synthetic procedures and the second section includes the biological importance of Quinazoline derivatives. Total hundred (100) to one hundred and ten (110) research papers ware searched. Out of these, seventy-eight papers were included in the review, the majority of research papers were from international journals. Fifty fours papers defined the different synthetic schemes considering the general strategies using orthosubstituted anilines such as 2-aminobenzoic acid (anthranilic acid) and its analogues, or isatoic anhydride as starting materials, which are condensed with acid chlorides, imidates or aldehydes. Microwave irradiation was also proven to be very useful to improve the yields, and in particular, it has been successfully applied to the Niementowski procedure involving the fusion of anthranilic acid with formamide. The remaining part of the review focuses on biological importance of the 4(3H)-quinazolinone scaffold as therapeutic agents and a broad range of activities like antibacterial, antifungal, antiviral, anticonvulsant, antitumor, antihypertensive, analgesic and anti-inflammatory agents has been highlighted. Conclusion: The present review focuses on simplified, efficient and widespread literature of the methods of synthesis and diverse pharmacological activities of quinazoline and its derivatives have been highlighted.
A rapid microwave-assisted green chemical synthesis of condensed 2-substituted-pyrimidin-4(3H)-ones 3, 4, and 5 involving the condensation of a variety of nitriles with o-aminoesters of thiophene 2a-e, benzene 2f, dimethoxybenzene 2g and quinazolinone 2h in the presence of catalytic amount of HCl alone or with the Lewis acid AlCl 3 under solvent-free conditions, is described for the first time. This novel and clean one-pot methodology, which is characterized by very short reaction times and easy workup procedures, can be exploited to generate a diverse library of condensed pyrimidine heterocycles.
Background: Quinazolines and quinazolinones constitute a major class of biologically active molecules both from natural and synthetic sources. The quinazolinone moiety is an important pharmacophore showing many types of pharmacological activities as shown in recent exhaustive review on the chemistry of 2-heteroaryl & heteroalkyl-4-quinazolinones4-quinazolinones are the formal condensation products of anthranilic acid and amides, and they can also be prepared in this fashion through the Niementowski quinazolinone synthesis, named after it’s discoverer Stefan Niementowski. Quinazoline and condensed Quinazoline exhibit potent central nervous system (CNS) activities like anti-anxiety, analgesic, anti-inflammatory [10] and anticonvulsant [11]. Quinazolin-4-ones with 2, 3-disubstitution is reported to possess significant analgesic, anti-inflammatory and anticonvulsant activities Methods: To expand these views and application profiles, efforts have been developed for the synthesis of a new class of quinazolinone by incorporating different amines into synthesized benzoxazinone ring by replacing O atom in the ring. Up to now, a great number of various procedures have been proposed for the synthesis of quinazolin-4-ones in the past few years [16]. Using microwave radiation, this reaction could be easily and rapidly performed in very good yields, providing a large quantity of various 3-substituted-2- propyl-quinazolin-4-one derivatives which can be employed as useful bioactive compounds. We report a facile and efficient method for the synthesis of 3-substituted-2-propyl-quinazolin-4-one by the condensation reaction of Anthranilic acid or Halogen substituted anthranilic acid or methyl anthranilate, butanoic anhydride with various amines. we also reports a drug/ligand or receptor/protein interactions by identifying the suitable active sites in human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer protein. Results: We are pleased to find that the reaction provided of 3-alkyl/aryl-2-alkyl-quinazolin-4-one gives good yield as well as good quality of product by using MW. All the synthesized compounds were subjected to grid-based molecular docking studies. The results shows that compound 4t have good affinity to the active site residue of human gamma-aminobutyric acid receptor, the gaba (a)r-beta3 homopentamer. Conclusion: The Microwave irradiation for synthesis of the title compounds offers reduction in reaction time, operation simplicity, cleaner reaction, easy work up and improved yields. The procedure clearly highlights the advantages of Green Chemistry. The data reported in this article may be a helpful guide for the medicinal chemists who are working in this area. The Protein-Ligand interaction plays a significant role in structural based drug designing. In the Present work we have docked the ligand, 2, 3-disubstituted quinazolinone with the proteins that are used as the target for GABA-A receptor.
The latest tools of genomics and chemistry and applies them to target and drug discovery is chemogenomoics. It is defined as the analysis of class of organic compound libraries against families of functionally related proteins called as receptor. chemogenomoics help to investigate biological target for the new drug entities. This deals with the systematic investigation of chemical-biological interactions. Study of chemogenomoics is the very important tool in medicinal chemistry for the development of new chemical entities) The main goal of chemogenomics is to identify the newer drugs and the targets because of number of chemical entities ware present so it is very difficult to identify the targets of said chemical compounds. The chemogenomic approach is the interaction of possible drug molecules with all probable targets In this regards we have reported significance and application of chemogenomoics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.