T cell responses play a critical role in controlling or clearing viruses. Therefore, strategies to prevent or treat infections include boosting T cell responses. T cells specific for various pathogens have been reported in unexposed individuals and an influence of such cells on the response toward vaccines is conceivable. However, little is known about their frequency, repertoire, and impact on vaccination. We performed a detailed characterization of CD8 ؉ T cells specific to a hepatitis C virus (HCV) epitope (NS3-1073) in 121 HCV-seronegative individuals. We show that in vitro HCV NS3-1073-specific CD8 ؉ T cell responses were rather abundantly detectable in one-third of HCV-seronegative individuals irrespective of risk factors for HCV exposure. Ex vivo, these NS3-1073-specific CD8 ؉ T cells were found to be both naive and memory cells. Importantly, recognition of various peptides derived from unrelated viruses by NS3-1073-specific CD8؉ T cells showed a considerable degree of T cell cross-reactivity, suggesting that they might in part originate from previous heterologous infections. Finally, we further provide evidence that preexisting NS3-1073-specific CD8 ؉ T cells can impact the T cell response toward peptide vaccination. Healthy, vaccinated individuals who showed an in vitro response toward NS3-1073 already before vaccination displayed a more vigorous and earlier response toward the vaccine. IMPORTANCE Preventive and therapeutic vaccines are being developed for many viral infections and often aim on inducing T cell responses.Despite effective antiviral drugs against HCV, there is still a need for a preventive vaccine. However, the responses to vaccines can be highly variable among different individuals. Preexisting T cells in unexposed individuals could be one reason that helps to explain the variable T cell responses to vaccines. Based on our findings, we suggest that HCV CD8 ؉ T cells are abundant in HCVseronegative individuals but that their repertoire is highly diverse due to the involvement of both naive precursors and crossreactive memory cells of different specificities, which can influence the response to vaccines. The data may emphasize the need to personalize immune-based therapies based on the individual's T cell repertoire that is present before the immune intervention.
The activation of naïve CD8 T cells typically results in the formation of effector cells (TE) as well as phenotypically distinct memory cells that are retained over time. Memory CD8 T cells can be further subdivided into central memory (TCM), effector memory (TEM) and tissue-resident memory (TRM) subsets, which cooperate to confer immunological protection. Using mixed bone marrow chimeras and adoptive transfer studies in which CD8 T cells either do or do not express the IL-21 receptor (IL-21R), we discovered that under homeostatic or lymphopenic conditions IL-21 acts directly on CD8 T cells to favor the accumulation of TE/TEM populations. The inability to perceive IL-21 signals under competitive conditions also resulted in lower levels of TRM phenotype cells and reduced expression of granzyme B in the small intestine. IL-21 differentially promoted the expression of the chemokine receptor CX3CR1 and the integrin α4β7 on CD8 T cells primed in vitro and on circulating CD8 T cells in the mixed bone marrow chimeras. The requirement for IL-21 to establish CD8 TE/TEM and TRM subsets was overcome by acute lymphocytic choriomeningitis virus infection; nevertheless, memory virus-specific CD8 T cells remained dependent on IL-21 for optimal accumulation in lymphopenic environments. Overall, this study reveals a context-dependent role for IL-21 in sustaining effector-phenotype CD8 T cells and influencing their migratory properties, accumulation, and functions.
Background: Adaptive immune responses that mediate protection against Chlamydia trachomatis (CT) remain poorly defined in humans. Animal chlamydia models have demonstrated that CD4+ Th1 cytokine responses mediate protective immunity against reinfection. To better understand protective immunity to CT in humans, we investigated whether select CT-specific CD4+ Th1 and CD8+ T cell cytokine responses were associated with protection against CT reinfection in women.Methods: Peripheral blood mononuclear cells were collected from 135 CT-infected women at treatment and follow-up visits and stimulated with CT antigens. CD4+ and CD8+ T-cells expressing IFN-γ, TNF-α, and/or IL-2 were assessed using intracellular cytokine staining and cytokine responses were compared between visits and between women with vs. without CT reinfection at follow-up.Results: A CD4+TNF-α response was detected in the majority (77%) of study participants at the treatment visit, but a lower proportion had this response at follow-up (62%). CD4+ IFN-γ and CD4+ IL-2 responses occurred less frequently at the treatment visit (32 and 18%, respectively), but increased at follow-up (51 and 41%, respectively). CD8+ IFN-γ and CD8+ TNF-α responses were detected more often at follow-up (59% for both responses) compared to the treatment visit (30% for both responses). At follow-up, a CD4+IFN-γ response was detected more often in women without vs. with reinfection (60 vs. 33%, P = 0.005).Conclusions: Our findings suggest that a CT-specific CD4+ IFN-γ response is associated with protective immunity against CT reinfection and is thus an important component of adaptive immunity to CT in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.