Linear models reach their limitations in applications with nonlinearities in the data. In this paper new empirical evidence is provided on the relative Euro inflation forecasting performance of linear and non-linear models. The well established and widely used univariate ARIMA and multivariate VAR models are used as linear forecasting models whereas neural networks (NN) are used as non-linear forecasting models. It is endeavoured to keep the level of subjectivity in the NN building process to a minimum in an attempt to exploit the full potentials of the NN. It is also investigated whether the historically poor performance of the theoretically superior measure of the monetary services flow, Divisia, relative to the traditional Simple Sum measure could be attributed to a certain extent to the evaluation of these indices within a linear framework. Results obtained suggest that non-linear models provide better within-sample and out-of-sample forecasts and linear models are simply a subset of them. The Divisia index also outperforms the Simple Sum index when evaluated in a non-linear framework.
Aston Academy for Research in Management is the administrative centre for all research activities at Aston Business School. The School comprises more than 70 academic staff organised into thematic research groups along with a Doctoral Programme of more than 50 research students. Research is carried out in all of the major areas of business studies and a number of specialist fields. For further information contact:The Research Director, Aston Business School, Aston University, Birmingham B4 7ET
We evaluate the performance of composite leading indicators of turning points of inflation in the Euro area, constructed by combining the techniques of Fourier analysis and Kalman filters with the National Bureau of Economic Research methodology. In addition the paper compares the empirical performance of Euro Simple Sum and Divisia monetary aggregates and provides a tentative answer to the issue of whether or not the UK should join the Euro area. Our findings suggest that, firstly, the cyclical pattern of the different composite leading indicators very closely reflect that of the inflation cycle for the Euro area; secondly, the empirical performance of the Euro Divisia is better than its Simple Sum counterpart and thirdly, the UK is better out of the Euro area.2
This paper compares the UK/US exchange rate forecasting performance of linear and nonlinear models based on monetary fundamentals, to a random walk (RW) model. Structural breaks are identified and taken into account. The exchange rate forecasting framework is also used for assessing the relative merits of the official Simple Sum and the weighted Divisia measures of money. Overall, there are four main findings. First, the majority of the models with fundamentals are able to beat the RW model in forecasting the UK/US exchange rate. Second, the most accurate forecasts of the UK/US exchange rate are obtained with a nonlinear model. Third, taking into account structural breaks reveals that the Divisia aggregate performs better than its Simple Sum counterpart. Finally, Divisia‐based models provide more accurate forecasts than Simple Sum‐based models provided they are constructed within a nonlinear framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.