Zebrafish (Danio rerio) larvae have been suggested as vertebrate model to complement or even replace mammals for rapidly assessing behavioral effects of psychoactive drugs. Yet, divergent responses have been reported in mammals and fish despite the conservation of many drug targets. Cocaine, eg, acts as stimulant in mammals but no such response has been documented for zebrafish larvae. We hypothesized that differences in exposure routes (inhalation or injection in mammals vs waterborne in fish) may be a reason for differences in behavioral responses. We characterized cocaine toxicokinetics by liquid chromatography-mass spectrometry and found its rapid uptake into larvae. We used Matrix-assisted laser desorption ionization-mass spectrometry imaging for the first time to characterize internal distribution of cocaine in zebrafish larvae. Surprisingly, eyes accumulated the highest amount of cocaine and retained most of it even after 48 h depuration. We attribute this to trapping by pigment melanin, a thus far little explored mechanism that may also be relevant for other basic drugs. Cocaine also reached the brain but with levels similar to those in trunk indicating simple passive diffusion as means of distribution which was supported by toxicokinetic models. Although brain levels covered those known to cause hyperactivity in mammals, only hypoactivity (decreased locomotion) was recorded in zebrafish larvae. Our results therefore point to cocaine's anesthetic properties as the dominant mechanism of interaction in the fish: upon entry through the fish skin and gills, it first acts on peripheral nerves rapidly overriding any potential stimulatory response in the brain.
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disorder, yet the genetic cause of up to 50% of cases remains unknown. Here, we show that mutations in KLHL24 cause HCM in humans. Using genome-wide linkage analysis and exome sequencing, we identified homozygous mutations in KLHL24 in two consanguineous families with HCM. Of the 11 young affected adults identified, 3 died suddenly and 1 had a cardiac transplant due to heart failure. KLHL24 is a member of the Kelch-like protein family, which acts as substrate-specific adaptors to Cullin E3 ubiquitin ligases. Endomyocardial and skeletal muscle biopsies from affected individuals of both families demonstrated characteristic alterations, including accumulation of desmin intermediate filaments. Knock-down of the zebrafish homologue klhl24a results in heart defects similar to that described for other HCM-linked genes providing additional support for KLHL24 as a HCM-associated gene. Our findings reveal a crucial role for KLHL24 in cardiac development and function.
The amyloid precursor protein (APP) is a transmembrane protein mostly recognized for its association with Alzheimer's disease. The physiological function of APP is still not completely understood much because of the redundancy between genes in the APP family. In this study we have used zebrafish to study the physiological function of the zebrafish APP homologue, appb, during development. We show that appb is expressed in post-mitotic neurons in the spinal cord. Knockdown of appb by 50-60% results in a behavioral phenotype with increased spontaneous coiling and prolonged touch-induced activity. The spinal cord motor neurons in these embryos show defective formation and axonal outgrowth patterning. Reduction in Appb also results in patterning defects and changed density of pre- and post-synapses in the neuromuscular junctions. Together, our data show that development of functional locomotion in zebrafish depends on a critical role of Appb in the patterning of motor neurons and neuromuscular junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.