Selective and efficient hydrosilylations of esters to alcohols by a well-defined manganese(I) complex with a commercially available bisphosphine ligand are described. These reactions are easy alternatives for stoichiometric hydride reduction or hydrogenation, and employing cheap, abundant, and nonprecious metal is attractive. The hydrosilylations were performed at 100 °C under solvent-free conditions with low catalyst loading. A large variety of aromatic, aliphatic, and cyclic esters bearing different functional groups were selectively converted into the corresponding alcohols in good yields.
Herein we report efficient catalytic hydrosilylations of nitroarenes to form the corresponding aromatic amines using a well-defined manganese(II)−NNO pincer complex with a low catalyst loading (1 mol %) under solvent-free conditions. This base-metal-catalyzed hydrosilylation is an easy and sustainable alternative to classical hydrogenation. A large variety of nitroarenes bearing various functionalities were selectively transformed into the corresponding aromatic amines in good yields. The potential utility of the present catalytic protocol was demonstrated by the preparation of commercial drug molecules.
The chemical transformation of lignocellulosic biomass into various fine chemicals is the necessity for sustainable developments. A significant research interest has been devoted to develop catalysts for the reduction of cellulose and lignin model compounds furfural and vanillin, respectively. An iron(II) complex ( 1) was readily synthesized by facile coordination of NNO pincer ligand with FeCl 2 .4H 2 O. The air-stable complex 1 was efficiently utilized for the catalytic transfer hydrogenation of furfural and vanillin using ecologically benign but challenging primary alcohol ethanol. Secondary alcohol isopropanol was also utilized. Various other biomass model compounds and structurally related aldehydes were also effectively reduced. Kinetic studies suggested first order kinetics in catalyst and zeroth order in substrate. Based on the experimental evidences and published reports, a catalytic cycle is proposed which proceed via iron(II)-dialkoxides and alkoxide-hydride intermediates. Finally, CHEM21 green metrics toolkit was utilized to evaluate the sustainable and green credentials of the catalytic protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.