SummaryThe kinetics of the enzymatic hydrolysis of sucrose by invertase have been examined, with particular emphasis on high substrate concentration. Initial rates of reaction were determined by following the production of glucose directly as a function of time over a wide range of substrate concentrations (0.04M to 2.06M). The resulting data reveal a reaction rate that increases gradually until the sucrose concentration reaches about 0.2921.3, after which the reaction velocity decreases with increasing sucrose concentration. Previous workers (e.g., Xelson and Schubertl) have reported a peak reaction velocity as determined by indirect polarimetric measurements of glucose, a t a sucrose concentration of about 0.17M. These measurements, however, neglect the intermediate oligosaccharides formed by the transferase action of invertase,8-lo and assume equal amounts of glucose and fructose. According to Anderson et u1.,Io these oligosaccharides interfere by producing an erroneously low reaction rate. Experimental results of this work confirm Anderson's observations, and show a further reaction rate increase of nearly 20% between sucrose concentrations of 0.177M and 0.285M under the same conditions of temperature, pH, and enzyme concentration.Effects of substrate diffusion, solution viscosity, water concentration, and substrate inhibition were experimentally studied and the results incorporated into a kinetic model that has proven satisfactory in modeling the experimental results. This model takes into account inhibition by primary substrate, with concentration of the secondary substrate water, as a rate limiting factor at sucrose concentrations greater than 0.285M.The effects of mixing, in terms of volumetric power input, on the reaction rate have been tested. Approximately 40-fold increase in volumetric power input caused no increase in the reaction rate. These experiments have shown that bulk mass transfer is not a rate limiting factor under the experimental conditions.
Electrokinetic phenomena play an important role in the electrical characterization of surfaces. In terms of planar or porous substrates, streaming potential and/or streaming current measurements can be used to determine the zeta potential of the substrates in contact with aqueous electrolytes. In this work, we perform electrical impedance spectroscopy measurements to infer the electrical resistance in a microchannel with the same conditions as for a streaming potential experiment. Novel correlations are derived to relate the streaming current and streaming potential to the Reynolds number of the channel flow. Our results not only quantify the influence of surface conductivity, and here especially the contribution of the stagnant layer, but also reveal that channel resistance and therefore zeta potential are influenced by the flow in the case of low ionic strengths. We conclude that convection can have a significant impact on the electrical double layer configuration which is reflected by changes in the surfaces conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.