Deciphering useful information from electrophysiological data recorded from the brain, in-vivo or in-vitro, is dependent on the capability to analyse spike patterns efficiently and accurately. The spike analysis mechanisms are heavily reliant on the clustering algorithms that enable separation of spike trends based on their spatio-temporal behaviors. Literature review report several clustering algorithms over decades focused on different applications. Although spike analysis algorithms employ only a small subset of clustering algorithms, however, not much work has been reported on the compliance and suitability of such clustering algorithms for spike analysis. In our study, we have attempted to comment on the suitability of available clustering algorithms and performance capacity when exposed to spike analysis. In this regard, the study reports a compatibility evaluation on algorithms previously employed in spike sorting as well as the algorithms yet to be investigated for application in sorting neural spikes. The performance of the algorithms is compared in terms of their accuracy, confusion matrix and accepted validation indices. Three data sets comprising of easy, difficult, and real spike similarity with known ground-truth are chosen for assessment, ensuring a uniform testbed. The procedure also employs two feature-sets, principal component analysis and wavelets. The report also presents a statistical score scheme to evaluate the performance individually and overall. The open nature of the data sets, the clustering algorithms and the evaluation criteria make the proposed evaluation framework widely accessible to the research community. We believe that the study presents a reference guide for emerging neuroscientists to select the most suitable algorithms for their spike analysis requirements.
Extracellular data analysis has become a quintessential method for understanding the neurophysiological responses to stimuli. This demands stringent techniques owing to the complicated nature of the recording environment. In this paper, we highlight the challenges in extracellular multi-electrode recording and data analysis as well as the limitations pertaining to some of the currently employed methodologies. To address some of the challenges, we present a unified algorithm in the form of selective sorting. Selective sorting is modelled around hypothesized generative model, which addresses the natural phenomena of spikes triggered by an intricate neuronal population. The algorithm incorporates Cepstrum of Bispectrum, ad hoc clustering algorithms, wavelet transforms, least square and correlation concepts which strategically tailors a sequence to characterize and form distinctive clusters. Additionally, we demonstrate the influence of noise modelled wavelets to sort overlapping spikes. The algorithm is evaluated using both raw and synthesized data sets with different levels of complexity and the performances are tabulated for comparison using widely accepted qualitative and quantitative indicators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.