Commercial powder bed fusion additive manufacturing systems use re-coaters for the layer-by-layer distribution of powder. Despite the known limitations of re-coaters, there has been relatively little work presented on the possible benefits of alternative powder delivery systems. Here, we reveal a feeding technology that uses vibration to control flow for powder bed additive manufacturing. The capabilities of this approach are illustrated experimentally using two very different powders; a ‘conventional’ gas atomized Ti-6Al-4V powder designed for electron beam additive manufacturing and a water atomized Fe-4 wt.% Ni alloy used in powder metallurgy. Single layer melt trials are shown for the water atomized powder to illustrate the fidelity of the melt tracks in this material. Discrete element modelling is next used to reveal the mechanisms that underpin the observed dependence of feed rate on feeder process parameters and to investigate the potential strengths and limitations of this feeding methodology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.