Polyclonal antibodies against the N terminus of the rat rho 1 subunit were generated to study the distribution of GABAc receptors in the mammalian retina. The specificity of the antibodies was tested in Western blots and transfected HEK-293 cells. No cross-reactivity with the GABAA receptor subunits alpha 1-3, beta 1-3, gamma 2, delta or with the glycine receptor subunits alpha 1 and beta could be detected. In contrast, the rho 1, rho 2, and rho 3 subunits were all recognized by the antibodies. In vertical sections of rat, rabbit, cat, and macaque monkey retinae, strong punctate immunoreactivity was present in the inner plexiform layer. Weaker immunoreactivity was also present in the outer-plexiform layer, and cell bodies of bipolar cells were faintly labeled. Double immunostaining of vertical sections and immunostaining of dissociated rat retinae showed the punctate immunofluorescence to colocalize with bipolar cell axon terminals. The puncta possibly represent clustering of the rho subunits at postsynaptic sites.
Polyclonal antibodies which recognize the rho-subunits of the GABA(C) receptor were applied to sections of the rat retina. Strong punctate immunoreactivity was found in the inner plexiform layer (IPL), which was shown by electron microscopy to represent a clustering of the GABA(C) receptors at synaptic sites. During postnatal development diffuse rho-immunoreactivity was first observed at postnatal day P3. Distinct labelling of bipolar cells appeared at P7 and punctate, synaptic labelling was observed at P10. In order to show that the rho-immunoreactive puncta coincide with the axons of bipolar cells, double immunostainings of retinal sections with an antiserum against syntaxin 3 and with the rho-antiserum were performed. The experiments showed that rho-immunoreactive puncta are preferentially located on the axon terminals of rod and cone bipolar cells. In order to determine whether GABA(C) receptor rho-subunits coassemble with GABA(A) receptor subunits, double-labelling experiments were performed with subunit specific antisera. Punctate, putative synaptic clustering was observed with all antisera applied, however, GABA(C) receptor expressing puncta did not coincide with GABA(A) receptor containing puncta. This suggests that there are no synaptic GABA receptors in the retina in which GABA(A) and GABA(C) receptor subunits are coassembled. Similar double-labelling experiments were also performed to find out whether GABA(C) receptors and glycine receptors are colocalized. They were clustered at different synapses. This suggests that synaptic GABA(C) receptors consist of rho-subunits and are not coassembled with GABA(A)- or glycine-receptor subunits.
We have investigated the distribution of GABA receptor rho 1 and rho 2 subunits in the rat central nervous system. Cloning of rat rho 1 and rho 2 cDNA fragments revealed similarities to the corresponding human sequences of 99% (rho 1) and 88% (rho 2) at the protein level. Whereas the human rho 2 subunit has no consensus sequence for phosphorylation by protein kinase C, the cytoplasmic loop of the rat sequence contains two such sites. Use of the polymerase chain reaction with reverse-transcribed total RNA (RT-PCR) from different brain tissues revealed that transcript for the rho 1 subunit was present in the retina only. The rho 2 mRNA was detected in all brain regions, with the highest level of expression in the retina. In situ hybridization of retinal sections revealed that rho 1 and rho 2 transcripts are present in the inner nuclear layer. RT-PCR and in situ hybridization of isolated retinal cells showed that both rho subunits are present in rod bipolar cells. Since these cells express bicuculline-insensitive GABA receptors, our results further support the idea that rho subunits are part of the GABAc receptor.
The interplay between kinases and phosphatases represents a fundamental regulatory mechanism in biological systems. Being less numerous than kinases, phosphatases increase their diversity by the acquisition of a variety of binding partners, thereby forming a large number of holoenzymes. Proteins interacting with protein phosphatase 1 (PP1) often bind via a so-called docking motif to regulate its enzymatic activity, substrate specificity, and subcellular localization. Here, we systematically determined structural elements that mediate the binding specificity of PP1 interacting proteins, and propose a refined consensus sequence for high-affinity PP1 ligands. Applying this pattern to database searches, we predicted and experimentally confirmed several previously unknown PP1 interactors. Thus, the suggested PP1 docking motif enables a highly specific prediction of PP1 binding partners, thereby facilitating the genome-wide identification of PP1 interactors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.