Biochar and activated carbon, both carbonaceous pyrogenic materials, are important products for environmental technology and intensively studied for a multitude of purposes. A strict distinction between these materials is not always possible, and also a generally accepted terminology is lacking. However, research on both materials is increasingly overlapping: sorption and remediation are the domain of activated carbon, which nowadays is also addressed by studies on biochar. Thus, awareness of both fields of research and knowledge about the distinction of biochar and activated carbon is necessary for designing novel research on pyrogenic carbonaceous materials. Here, we describe the dividing ranges and common grounds of biochar, activated carbon and other pyrogenic carbonaceous materials such as charcoal based on their history, definition and production technologies. This review also summarizes thermochemical conversions and non-thermal pre-and post-treatments that are used to produce biochar and activated carbon. Our overview shows that biochar research should take advantage of the numerous techniques of activation and modification to tailor biochars for their intended applications.
Carbon nanotubes (CNTs) have numerous exciting potential applications and some that have reached commercialization. As such, quantitative measurements of CNTs in key environmental matrices (water, soil, sediment, and biological tissues) are needed to address concerns about their potential environmental and human health risks and to inform application development. However, standard methods for CNT quantification are not yet available. We systematically and critically review each component of the current methods for CNT quantification including CNT extraction approaches, potential biases, limits of detection, and potential for standardization. This review reveals that many of the techniques with the lowest detection limits require uncommon equipment or expertise, and thus, they are not frequently accessible. Additionally, changes to the CNTs (e.g., agglomeration) after environmental release and matrix effects can cause biases for many of the techniques, and biasing factors vary amongst the techniques. Five case studies are provided to illustrate how to use this information to inform responses to real-world scenarios such as monitoring potential CNT discharge into a river or ecotoxicity testing by a testing laboratory. Overall, substantial progress has been made in improving CNT quantification during the past ten years, but additional work is needed for standardization, development of extraction techniques from complex matrices, and multi-method comparisons of standard samples to reveal the comparability of techniques.
We elucidated scent components, daily emission patterns, and the localization of floral scent release of Mirabilis jalapa. Volatiles emitted by the whole plant as well as by detached flowers were investigated using dynamic headspace analysis and gas chromatography/ mass spectrometry. Among several constituents including (Z)-3-hexenyl acetate, β-myrcene, (Z)-ocimene, and benzyl benzoate, the monoterpene (E)-β-ocimene was the major fragrance component. Fragrance release occurred in a time-dependent manner. The emission of volatiles, including (E)-β-ocimene, showed an evening-specific maximum (1700-2000 pm). The emission of (Z)-3-hexenyl acetate reached its maximum 3 h later. Histological (neutral red staining) and morphological studies (electron and light microscopy) of the flower surface and tissues of M. jalapa revealed differences in surface structures and tissue characteristics. The flower could be divided into four main sections, including the tube, the transition zone between tube and limb, a star-shaped center of the limb, and petaloid lobes of the limb. These petaloid lobes are the site of (E)-β-ocimene release. Stomata and trichomes found on the abaxial flower surface were not directly involved in fragrance release. Clear indications of osmophores involved in scent release could not be found. Thus, the results indicate that floral volatiles probably are released by diffuse emission in M. jalapa.
An approach for the size measurement of particulate (nano)materials by transmission electron microscopy was evaluated. The approach combines standard operating procedures for specimen preparation, imaging, and image analysis, and it was evaluated on a series of certified reference materials and representative test materials with varying physical properties, including particle size, shape, and agglomeration state. The measurement of the median value of the minimal external particle diameter distribution was intra-laboratory validated. The validation study included an assessment of the limit of detection, working range, selectivity, precision, trueness, robustness, and ruggedness. An uncertainty that was associated to intermediate precision in the range of 1–7% and an expanded measurement uncertainty in the range of 7–20% were obtained, depending on the material and image analysis mode. No bias was observed when assessing the trueness of the approach on the certified reference materials ERM-FD100 and ERM-FD304. The image analysis method was validated in an inter-laboratory study by 19 laboratories, which resulted in a within-laboratory precision in the range of 2–8% and a between-laboratory precision of between 2% and 14%. The automation and standardization of the proposed approach significantly improves labour and cost efficiency for the accurate and precise size measurement of the particulate materials. The approach is shown to be implementable in many other electron microscopy laboratories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.