Background: For decades, the major source of information used to make therapeutic decisions by patients with diabetes has been glucose measurements using capillary blood samples. Knowledge gained from clinical studies, for example, on the impact of metabolic control on diabetes-related complications, is based on such measurements. Different to traditional blood glucose measurement systems, systems for continuous glucose monitoring (CGM) measure glucose in interstitial fluid (ISF). The assumption is that glucose levels in blood and ISF are practically the same and that the information provided can be used interchangeably. Thus, therapeutic decisions, that is, the selection of insulin doses, are based on CGM system results interpreted as though they were blood glucose values. Methods: We performed a more detailed analysis and interpretation of glucose profiles obtained with CGM in situations with high glucose dynamics to evaluate this potentially misleading assumption. Results: Considering physical activity, hypoglycemic episodes, and meal-related differences between glucose levels in blood and ISF uncover clinically relevant differences that can make it risky from a therapeutic point of view to use blood glucose for therapeutic decisions. Conclusions: Further systematic and structured evaluation as to whether the use of ISF glucose is more safe and efficient when it comes to acute therapeutic decisions is necessary. These data might also have a higher prognostic relevance when it comes to long-term metabolic consequences of diabetes. In the long run, it may be reasonable to abandon blood glucose measurements as the basis for diabetes management and switch to using ISF glucose as the appropriate therapeutic target.
Self-monitoring of blood glucose (SMBG) is the standard method by which the vast majority of patients assess their diabetes control. By virtue of the episodic nature, the limited number of times per day that it is actually performed, and the infrequent testing at night, SMBG can provide only a partial view of the frequency and severity of hypoglycemia. While multiple studies have used the nadir of the glucose level to differentiate between mild and severe hypoglycemia, 1-3 it is not possible to infer the intensity of hypoglycemia from SMBG because the duration of hypoglycemia is not known. This limits our ability to interpret the effect of various interventions for improving glycemic control as well as our understanding of the short-and long-term risks associated with hypoglycemia. On the other hand, continuous glucose monitoring (CGM) collects data on the frequency, duration and severity of hypoglycemia whether or not it is symptomatic. 4-6 The hypoglycemia triad (Hypo-Triad) consists of the three metrics that are usually reported in trials using CGM-area under the curve (AUC), time in hypoglycemia, and frequency of hypoglycemic excursions per day. However, it is unclear which individual metric or combination of metrics of the Hypo-Triad best characterizes the clinical and pathophysiologic impact of hypoglycemia. Figure 1 shows an example of a CGM tracing with two hypoglycemic episodes with different characteristics. Therefore, we developed two new 721242D STXXX10.
Background: This analysis reports the findings from a predefined exploratory cohort (cohort B) from the ADAPT (ADvanced Hybrid Closed Loop Study in Adult Population with Type 1 Diabetes) study. Adults with type 1 diabetes (T1D) with suboptimal glucose control were randomly allocated to an advanced hybrid closed-loop (AHCL) system or multiple daily injections of insulin (MDI) plus real-time continuous glucose monitoring (RT-CGM). Methods: In this prospective, multicenter, exploratory, open-label, randomized controlled trial, 13 participants using MDI + RT-CGM and with HbA1c ≥8.0% were randomized to switch to AHCL (n = 8) or continue with MDI + RT-CGM (n = 5) for six months. Prespecified endpoints included the between-group difference in mean change from baseline in HbA1c, CGM-derived measures of glycemic control, and safety. Results: The mean HbA1c level decreased by 1.70 percentage points in the AHCL group versus a 0.60 percentage point decrease in the MDI + RT-CGM group, with a model-based treatment effect of −1.08 percentage points (95% confidence interval [CI] = −2.17 to 0.00 percentage points; P = .0508) in favor of AHCL. The percentage of time spent with sensor glucose levels between 70 and 180 mg/dL in the study phase was 73.6% in the AHCL group and 46.4% in the MDI + RT-CGM group; model-based between-group difference of 28.8 percentage points (95% CI = 12.3 to 45.3 percentage points; P = .0035). No diabetic ketoacidosis or severe hypoglycemia occurred in either group. Conclusions: In people with T1D with HbA1c ≥8.0%, the use of AHCL resulted in improved glycemic control relative to MDI + RT-CGM. The scale of improvement suggests that AHCL should be considered as an option for people not achieving good glycemic control on MDI + RT-CGM.
ZusammenfassungCGM mit Darstellung der aktuellen Glukosewerte (rtCGM) ist aktuell einer der wichtigsten diagnostischen Optionen in der Diabetologie. Es ermöglicht eine umfangreiche und unmittelbare Unterstützung und Erleichterung des Diabetesmanagements, besonders wenn eine Insulintherapie angewendet wird. Weiterhin stellt rtCGM den notwendigen Systempartner für die Steuerung der automatisierten Insulinabgabe in AID-Systemen dar. In Verbindung mit Smart-Pens unterstützt ein rtCGM die korrekte Durchführung des Insulinmanagements und erinnert an Bolusinjektionen.RtCGM-Daten sind heute das Fundament des personalisierten Datenmanagements und Alltagscoachings und stellen die Basis der Digitalisierung und telemedizinischen Intervention dar. Die Möglichkeit der interoperablen Nutzung ist aus therapeutischer Sicht eine zentrale Eigenschaft eines rtCGMs und kann zur Erweiterung der Indikationen, unabhängig von Diabetestyp oder Therapieform führen. Dies könnte auch den vorübergehenden oder intermittierenden Einsatz bei Menschen mit Typ-2-Diabetes ohne Insulinbehandlung betreffen. Kürzlich veröffentlichte internationale Leitlinien, z.B. der Amerikanischen Gesellschaft für klinische Endokrinologie (AACE) fordern auf der Basis umfangreicher Evidenz, dass die Glukosemessung mit einem rtCGM für alle Menschen mit Diabetes nutzbar und verfügbar sein sollte. Bereits in der Phase gestörter Glukosetoleranz kann ein rtCGM-System als Alltagscoaching oder Biofeedback bei Einbettung in ein Gesamtbehandlungskonzept unterstützen, mit dem Ziel aktiver und fundierter Handlungen des Anwenders im Diabetesalltag.Die Vielfalt der Nutzungsoptionen und die immer schnelleren technischen Innovationszyklen von rtCGM-Systemen wurden mit Blick auf aktuelle Anforderungen und die notwendigen Strukturanpassungen des Gesundheitssystems von einer rtCGM-erfahrenen Expertengruppe diskutiert. Ziel war es, konkrete Lücken in der Versorgungsstruktur sowie potenzielle Handlungsfelder in der Diabetologie zu identifizierten und mögliche Indikationserweiterungen für den Einsatz von rtCGM darzustellen. Dieses, sowie die Erkenntnisse und Schlussfolgerungen der Diskussionen werden in diesem Artikel dargestellt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.