Currently, there are no comparative studies on the possible routes of decay of fullerenyl radicals. Such information is required for development of new synthetic approaches to the fullerene derivatives, obtained via radical reactions, and understanding mechanisms of oxidative destruction of fullerene-containing materials. In the present work, we have performed a theoretical study on the possible reactions of the selected fullerenyl radicals, generated in the well-known experimental systems. We consider three main routes for the radical decay: formation of fullerene bisadducts via XC60(•) + X(•) reactions, dimerization of XC60(•), and their interaction with molecular oxygen. The calculated heat effects explain the experimental regularities of fullerene radical reactions (e.g., the reversibility of the dimerization and low reactivity of fullerenyls toward molecular oxygen). We have found that the heat effects are maximal for the dimerization of ROOC60(•), so the interaction of C60 with peroxy radicals may provide more effective synthetic routes to the single-bonded C60 dimers compared to the known ones. Moreover, the exothermicity of ROO(•) addition to C60 is increased during the subsequent addition that allows reconsidering the reasons underlying C60 antioxidant activity. Additionally, polarizability and its nonadditivity of fullerene dimers XC60-C60X have been found. Guided by the calculated polarizabilities, we assume a new bistable system "fullerenyl ↔ dimer" for molecular machinery. Depending on the conditions, such a system can exist in two states differing by their response to external electric fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.