Lithium metal batteries are next‐generation energy storage devices that rely on the stable electrodeposition of lithium metal during the charging process. The major challenge associated with this battery chemistry is related to the uneven deposition that leads to dendritic growth and poor coulombic efficiency (CE). A promising strategy for addressing this challenge is utilizing a polymer coating on the anodic surface. While several works in the past have evaluated polymer coatings, the requirements for polymer design are still unclear. In this work, the effect of polymer dynamics on lithium metal deposition is specifically investigated. Electrolyte (solvent) blocking perfluoropolyether polymer networks with evenly spaced H‐bonding sites of various strengths are designed, resulting in significant differences in the molecular ordering, as analyzed by X‐ray scattering measurements. The differences in the H‐bonding strength directly impact the mechanical properties of these materials, thus providing a controlled set of samples with a range of polymer dynamics for electrodeposition studies. Finally, a systematic evaluation of the lithium metal electrodeposition quality with these polymers as anodic coating shows that polymers with flowability or faster polymer dynamics exhibit higher CE. These experimental findings provide rational design principles for soft polymer coatings on lithium metal anodes.
Due to its high specific capacity, silicon is a promising candidate to substitute conventional graphite as anode material in lithium-ion batteries. However, pure silicon-based anodes suffer from poor capacity retention, mainly due to a large volume change during cycling, which results in material pulverization and other side reactions. Therefore, alternative compositions with lowered silicon content and a similar working voltage as graphite are favored, e.g. silicon-graphite (SiG), as they can reduce these volume change and side reactions while maintaining a high capacity. Here, neutron depth profiling (NDP) offers the unique possibility to quantify non-destructively the lithium concentration profile over the depth of these electrodes. In this study, the (de-)intercalation phenomena during (de-)lithiation in SiG porous anodes with silicon contents ranging from 0 wt% to 20 wt% is investigated for the first time using ex situ NDP during the initial discharge at defined depths of discharge (DODs) states. These findings are complemented by a conventional electrochemical analysis of the first full cycle with a charge/discharge rate of C/20. While the specific capacity is observed to increase with higher silicon content, NDP directly reveals a homogeneous irreversible lithium accumulation within the entire electrode depth.
High voltage spinel is one of the most promising nextgeneration cobalt-free cathode materials for lithium ion battery applications. Besides the typically utilized compositional range of Li x Ni 0.5 Mn 1.5 O4 0 < x < 1 in the voltage window of 4.90−3.00 V, additional 1.5 mol of Li per formula unit can be introduced into the structure, in an extended voltage range to 1.50 V. Theoretically, this leads to significant increase of the specific energy from 690 to 1190 Wh/kg. However, utilization of the extended potential window leads to rapid capacity fading and voltage polarization that lack a comprehensive explanation. In this work, we conducted potentiostatic entropymetry, operando XRD and neutron diffraction on the ordered stoichiometric spinel Li x Ni 0.5 Mn 1.5 O 4 within 0 < x < 2.5 in order to understand the dynamic structure evolution and correlate it with the voltage profile. During the two-phase reaction from cubic (x < 1) to tetragonal (x > 1) phase at ∼2.8 V, we identified the evolution of a second tetragonal phase with x > 2. The structural evaluation during the delithiation indicates the formation of an intermediate phase with cubic symmetry at a lithium content of x = 1.5. Evaluation of neutron diffraction data, with maximum entropy method, of the highly lithiated phase Li x Ni 0.5 Mn 1.5 O 4 with 2 < x < 2.5 strongly suggests that lithium ions are located on octahedral 8a and tetrahedral 4a positions of the distorted tetragonal phase I4 1 amd. Consequently, we were able to provide a conclusive explanation for the additional voltage step at 2.10 V, the sloping voltage profile below 1.80 V, and the additional voltage step at ∼3.80 V.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.