Efficient engulfment of the intact cell corpse is a critical end point of apoptosis, required to prevent secondary necrosis and inflammation. The presentation of "eat-me" signals on the dying cell is an important part of this process of recognition and engulfment by professional phagocytes. Here, we present evidence that apoptotic cells secrete chemotactic factor(s) that stimulate the attraction of monocytic cells and primary macrophages. The activation of caspase-3 in the apoptotic cell was found to be required for the release of this chemotactic factor(s). The putative chemoattractant was identified as the phospholipid, lysophosphatidylcholine. Further analysis showed that lysophosphatidylcholine was released from apoptotic cells due to the caspase-3 mediated activation of the calcium-independent phospholipase A(2). These data suggest that in addition to eat-me signals, apoptotic cells display attraction signals to ensure the efficient removal of apoptotic cells and prevent postapoptotic necrosis.
Bid, a caspase-activated proapoptotic BH3-only protein, is essential for Fas-induced hepatocyte destruction. Recent studies published in Cell produced conflicting results, indicating that loss of Bid either protects or enhances apoptosis induced by DNA damage or replicative stress. To resolve this controversy, we generated novel Bid-deficient mice on an inbred C57BL/6 background and removed the drug-selection cassette from the targeted locus. Nine distinct cell types from these Bid-deficient mice underwent cell-cycle arrest and apoptosis in a manner indistinguishable from control WT cells in response to DNA damage or replicative stress. Moreover, we found that even cells from the original Bid-deficient mice responded normally to these stimuli, indicating that differences in genetic background or the presence of a strong promoter within the targeted locus are unlikely to explain the differences between our results and those reported previously. We conclude that Bid has no role in DNA damage- or replicative stress-induced apoptosis or cell-cycle arrest.
LAQ824 and LBH589 (panobinostat) are histone deacetylase inhibitors (HDACi) developed as cancer therapeutics and we have used the E-myc lymphoma model to identify the molecular events required for their antitumor effects. Induction of tumor cell death was necessary for these agents to mediate therapeutic responses in vivo and both HDACi engaged the intrinsic apoptotic cascade that did not require p53. Death receptor pathway blockade had no effect on the therapeutic activities of LAQ824 and LBH589; however, overexpression of Bcl-2 or Bcl-X L protected lymphoma cells from HDACi-induced killing and suppressed their therapeutic activities. Deletion of Apaf-1 or Caspase-9 delayed HDACi-induced lymphoma killing in vitro and in vivo, associated with suppression of many biochemical indicators of apoptosis, but did not provide long-term resistance to these agents and failed to inhibit their therapeutic activities. E-myc lymphomas lacking a functional apoptosome displayed morphologic and biochemical features of autophagy after treatment with LAQ824 and LBH589, indicating that, in the absence of a complete intrinsic apoptosis pathway involving apoptosome formation, these HDACi can still mediate a therapeutic response. Our data indicate that damage to the mitochondria is the key event necessary for LAQ824 and LBH589 to mediate tumor cell death and a robust therapeutic response. (Blood. 2009;114:380-393)
Histone deacetylase inhibitors (HDACi) are a promising new class of chemotherapeutic drug currently in early phase clinical trials. A large number of structurally diverse HDACi have been purified or synthesised that mostly inhibit the activity of all eleven class I and II HDACs. While these agents demonstrate many features required for anti-cancer activity such as low toxicity against normal cells and an ability to inhibit tumor cell growth and survival at nanomolar concentrations, their mechanisms of action are largely unknown. Initially, a model was proposed whereby HDACi-mediated transactivation of a specific gene or set of genes was responsible for the inhibition of cell cycle progression or induction of apoptosis. Given that HDACs can regulate the activity of a number of nonhistone proteins and that histone acetylation is important for events such as DNA replication and mitosis that do not directly involve gene transcription, it appears that the initial mechanistic model for HDACi may have been too simple. Herein, we provide an update on the transcription-dependent and -independent events that may be important for the anti-tumor activities of HDACi and discuss the use of these compounds in combination with other chemotherapeutic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.