This paper presents visual analysis of eye state and head pose (HP) for continuous monitoring of alertness of a vehicle driver. Most existing approaches to visual detection of nonalert driving patterns rely either on eye closure or head nodding angles to determine the driver drowsiness or distraction level. The proposed scheme uses visual features such as eye index (EI), pupil activity (PA), and HP to extract critical information on nonalertness of a vehicle driver. EI determines if the eye is open, half closed, or closed from the ratio of pupil height and eye height. PA measures the rate of deviation of the pupil center from the eye center over a time period. HP finds the amount of the driver's head movements by counting the number of video segments that involve a large deviation of three Euler angles of HP, i.e., nodding, shaking, and tilting, from its normal driving position. HP provides useful information on the lack of attention, particularly when the driver's eyes are not visible due to occlusion caused by large head movements. A support vector machine (SVM) classifies a sequence of video segments into alert or nonalert driving events. Experimental results show that the proposed scheme offers high classification accuracy with acceptably low errors and false alarms for people of various ethnicity and gender in real road driving conditions. Index Terms-Driver alertness monitoring, driver drowsiness detection, eye state, head pose (HP), support vector machines (SVMs).
This paper presents estimation of head pose angles from a single 2D face image using a 3D face model morphed from a reference face model. A reference model refers to a 3D face of a person of the same ethnicity and gender as the query subject. The proposed scheme minimizes the disparity between the two sets of prominent facial features on the query face image and the corresponding points on the 3D face model to estimate the head pose angles. The 3D face model used is morphed from a reference model to be more specific to the query face in terms of the depth error at the feature points. The morphing process produces a 3D face model more specific to the query image when multiple 2D face images of the query subject are available for training. The proposed morphing process is computationally efficient since the depth of a 3D face model is adjusted by a scalar depth parameter at feature points. Optimal depth parameters are found by minimizing the disparity between the 2D features of the query face image and the corresponding features on the morphed 3D model projected onto 2D space. The proposed head pose estimation technique was evaluated on two benchmarking databases: 1) the USF Human-ID database for depth estimation and 2) the Pointing'04 database for head pose estimation. Experiment results demonstrate that head pose estimation errors in nodding and shaking angles are as low as 7.93° and 4.65° on average for a single 2D input face image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.