This paper presents visual analysis of eye state and head pose (HP) for continuous monitoring of alertness of a vehicle driver. Most existing approaches to visual detection of nonalert driving patterns rely either on eye closure or head nodding angles to determine the driver drowsiness or distraction level. The proposed scheme uses visual features such as eye index (EI), pupil activity (PA), and HP to extract critical information on nonalertness of a vehicle driver. EI determines if the eye is open, half closed, or closed from the ratio of pupil height and eye height. PA measures the rate of deviation of the pupil center from the eye center over a time period. HP finds the amount of the driver's head movements by counting the number of video segments that involve a large deviation of three Euler angles of HP, i.e., nodding, shaking, and tilting, from its normal driving position. HP provides useful information on the lack of attention, particularly when the driver's eyes are not visible due to occlusion caused by large head movements. A support vector machine (SVM) classifies a sequence of video segments into alert or nonalert driving events. Experimental results show that the proposed scheme offers high classification accuracy with acceptably low errors and false alarms for people of various ethnicity and gender in real road driving conditions. Index Terms-Driver alertness monitoring, driver drowsiness detection, eye state, head pose (HP), support vector machines (SVMs).
This paper presents a methodology for the size optimization of a stand-alone hybrid PV/wind/diesel/battery system while considering the following factors: total annual cost (TAC), loss of power supply probability (LPSP), and the fuel cost of the diesel generator required by the user. A new optimization algorithm and an object function (including a penalty method) are also proposed; these assist with designing the best structure for a hybrid system satisfying the constraints. In hybrid energy system sources such as photovoltaic (PV), wind, diesel, and energy storage devices are connected as an electrical load supply. Because the power produced by PV and wind turbine sources is dependent on the variation of the resources (sun and wind) and the load demand fluctuates, such a hybrid system must be able to satisfy the load requirements at any time and store the excess energy for use in deficit conditions. Therefore, reliability and cost are the two main criteria when designing a stand-alone hybrid system. Moreover, the operation of a diesel generator is important to achieve greater reliability. In this paper, TAC, LPSP, and the fuel cost of the diesel generator are considered as the objective variables and a hybrid teaching-learning-based optimization algorithm is proposed and used to choose the best structure of a stand-alone hybrid PV/wind/diesel/battery system. Simulation results from MATLAB support the effectiveness of the proposed method and confirm that it is more efficient than conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.