Exchange rate models with uncertain and incomplete information predict that investors focus on a small set of fundamentals that changes frequently over time. We design a model selection rule that captures the current set of fundamentals that best predicts the exchange rate. Out-of-sample tests show that the forecasts made by this rule significantly beat a random walk for 5 out of 10 currencies. Furthermore, the currency forecasts generate meaningful investment profits. We demonstrate that the strong performance of the model selection rule is driven by time-varying weights attached to a small set of fundamentals, in line with theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.