Stiction is a major failure in microelectromechanical system (MEMS) devices in which two contacting surfaces can remain stuck together because of the adhesive forces. Due to the difference between the surfaces roughness and the adhesive force range, the real contact areas are usually smaller than the apparent one, resulting in a scatter in the adhesive forces. Consequently, the stiction is an uncertain phenomenon. In this work, we develop a probabilistic model to predict the uncertainties of stiction due to the capillary forces acting on stiff materials. This model contains two levels: at the deterministic level, the model can predict the pull-out adhesive contact forces for a given surface topology; at the probabilistic level, the model generates independent identically distributed surfaces on which the deterministic solution can be applied to evaluate the uncertainties related to the stiction phenomenon.
The research field of metasurfaces has attracted considerable attention in recent years due to its high potential to achieve flat, ultrathin optical devices of high performance. Metasurfaces, consisting of artificial patterns of subwavelength dimensions, often require fabrication techniques with high aspect ratios (HARs). Bosch and Cryogenic methods are the best etching candidates of industrial relevance towards the fabrication of these nanostructures. In this paper, we present the fabrication of Silicon (Si) metalenses by the UV-Nanoimprint Lithography method and cryogenic Deep Reactive Ion Etching (DRIE) process and compare the results with the same structures manufactured by Bosch DRIE both in terms of technological achievements and lens efficiencies. The Cryo- and Bosch-etched lenses attain efficiencies of around 39% at wavelength λ = 1.50 µm and λ = 1.45 µm against a theoretical level of around 61% (for Si pillars on a Si substrate), respectively, and process modifications are suggested towards raising the efficiencies further. Our results indicate that some sidewall surface roughness of the Bosch DRIE is acceptable in metalense fabrication, as even significant sidewall surface roughness in a non-optimized Bosch process yields reasonable efficiency levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.