<p>The societal impacts of climate change during the late Holocene leads to regional anthropogenic changes over the Nile region floodplain and could have acted in tandem with natural factors like major volcanic eruptions on the regional climate system to magnify the local climatic impacts. This study aims to explore and investigate the sensitivity of climatic changes to the regional anthropogenic changes due to various factors over the Nile river floodplains during the late-Holocene (2.5K years before present). The GISS ModelE Earth system model will be used to simulate the various scenarios of regional increasing/decreasing river fraction, changes in vegetation type and cover, along with changes in land surface type against the no-changes scenario in absence of volcanic eruptions. The spatial coverage of the Nile river basin is estimated using the GIS shapefile based on elevation data from Shuttle Radar Topography Mission (SRTM) at 3 Arc-seconds (approx. 90-meter) horizontal resolution. The extent of flooding in the model grid (2.0&#176;x2.5&#176; in latitude and longitude) is estimated using the existing high-resolution (0.125&#176;x0.125&#176;) gridded topographic elevation information and mapped over the Nile river floodplains. This study also focuses on evaluating the NASA GISS ModelE for resolving the climate feedbacks and response on climate system due to anthropogenic changes and volcanic eruptions. It is also aimed to analyze and quantify the impact of various anthropogenic factors over the African monsoon system and rainfall over the region, which feeds the Nile River.</p>
Abstract. The Ptolemaic era (305–30 BCE) represents an important period of Ancient Egyptian history known for its major material and scientific advances, but also ongoing episodes of political and social unrest in the form of (sometimes widespread) revolts against the Ptolemaic elites. While the role of environmental pressures has long been overlooked in this period of Egyptian history, ice-core-based volcanic histories have identified the period as experiencing multiple notable eruptions, and a repeated temporal association between explosive volcanism and revolt has recently been noted. Here we analyze the global and regional (Nile River Basin) climate response to a unique historical case of 4 consecutive and closely timed eruptions (first a tropical one, closely followed by 3 extratropical northern hemispheric events) between 168 and 158 BCE, a particularly troubled period in Ptolemaic history for which we now provide a more detailed hydroclimatic context. The NASA GISS ModelE Earth system model simulates a strong radiative response with a radiative forcing (Top of atmosphere) of -7.5 W/m2 (following the first eruption) and -4.0 w/m2 (after each of the 3 remaining eruptions) at a global scale. Associated with this, we observe a global cooling of the order of 1.5°C at the surface following the first (tropical) eruption, with the following three extratropical eruptions extending the cooling period for more than 15 years. Consequently, this series of eruptions constrained the northward migration of the inter-tropical convergence zone (ITCZ) during the northern hemisphere summer monsoon season, and major monsoon zones (African, South and East Asian) experienced suppression of rainfall >1 mm/day during the monsoon (JJAS) season averaged for 2 years after each eruption. A substantial suppression of north African and Indian summer monsoon over the Nile River headwater region vigorously affects the river flow in the catchment and river discharge. River mass flow consecutively decreases by up to more than 30 % relative to an unperturbed from volcanoes annual mean flow for 2 years after the tropical eruption. A moderate decrease of up to 15–20 % is produced after each of the remaining eruptions. These results show that the first eruption produces a strong hydroclimate response, and the following 3 eruptions prolonged the drying conditions. These results also support the contention that the observed association between ice-core-based signals of explosive volcanism and the hydroclimatic impact of these eruptions during the Ptolemy era, including the suppression of the critical for agriculture Nile summer flooding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.