A novel ion-counting method for significantly improving the spatial resolution and detection sensitivity of two-dimensional product imaging in molecular beam experiments is presented. The method makes use of real-time digital image processing to retrieve, threshold, and determine the local maximum of each ion hitting a microchannel plate assembly. The current version can process data at rates up to 3.07 Mbyte/s, and methods for accelerating this rate are proposed.
This paper follows the development of visual communication through information visualization in the wake of the Fukushima nuclear accident in Japan. While information aesthetics are often applied to large data sets retrospectively, the author developed new works concurrently with an ongoing crisis to examine the impact and social aspects of visual communication while events continued to unfold. The resulting work, Fukushima Nuclear Accident—Radiation Comparison Map, is a reflection of rapidly acquired data, collaborative on-line analysis and reflective criticism of contemporary news media, resolved into a coherent picture through the participation of an on-line community.
We report on the experience of creating a socially networked system, the Research-oriented Social Environment (RoSE), for representing knowledge in the form of relationships between people, documents, and groups. Developed as an intercampus, interdisciplinary project of the University of California, this work reflects on a collaboration between scholars in the humanities, software engineering, and information studies by providing an opportunity not only to synthesize different disciplinary perspectives, but also to interrogate and challenge the assumptions each brings to team-based design projects in the digital humanities. This work examines socially networked knowledge as both content and methodology for collaboration, calling for further critique and future investigation of epistemological questions in models of social networks.
Rendering performance for rich Internet applications (RIAs) has recently focused on the debate between using Flash and HTML5 for streaming video and gaming on mobile devices. A key area not widely explored, however, is the scalability of raw bitmap graphics performance for RIAs. Does Flash render animated sprites faster than HTML5? How much faster is WebGL than Flash? Answers to these questions are essential for developing large-scale data visualizations, online games, and truly dynamic websites. A new test methodology analyzes graphics performance across RIA frameworks and browsers, revealing specific performance outliers in existing frameworks. The results point toward a future in which all online experiences might be GPU accelerated.
Figure 1: Interactive water simulation of 2500 particles at 75 fps with surface extraction by sphere scan conversion on the CPU and rendering of shadow and environment maps on the GPU.
AbstractFluid simulations require efficient dynamics, surface extraction and rendering in order to achieve real time interaction. We present a novel technique for the surface extraction of stream-shaped fluid simulations represented as particles. Typical surface extraction methods for particles combine implicit function evaluation with the marching cubes algorithm. In our approach, we dynamically update vertex positions in pre-generated geometry to efficiently construct and render fluid surfaces. Cylinders are wrapped to water streams composed of particles, with simulation and polygonization on the CPU, and shadows and lighting on the GPU. While limited to stream-shaped fluids, our technique is significantly faster than marching cubes, scales well with resolution and number of particles and, unlike point-based rendering, produces true 3D polygonal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.