Summary Background 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov , NCT03471494 . Findings Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding National Institute for Health Research Global Health Research Unit.
BackgroundThe existence of socio-economic inequalities in child mortality is well documented. African cities grow faster than cities in most other regions of the world; and inequalities in African cities are thought to be particularly large. Revealing health-related inequalities is essential in order for governments to be able to act against them. This study aimed to systematically compare inequalities in child mortality across 10 major African cities (Cairo, Lagos, Kinshasa, Luanda, Abidjan, Dar es Salaam, Nairobi, Dakar, Addis Ababa, Accra), and to investigate trends in such inequalities over time.MethodsData from two rounds of demographic and health surveys (DHS) were used for this study (if available): one from around the year 2000 and one from between 2007 and 2011. Child mortality rates within cities were calculated by population wealth quintiles. Inequality in child mortality was assessed by computing two measures of relative inequality (the rate ratio and the concentration index) and two measures of absolute inequality (the difference and the Erreyger’s index).ResultsMean child mortality rates ranged from about 39 deaths per 1,000 live births in Cairo (2008) to about 107 deaths per 1,000 live births in Dar es Salaam (2010). Significant inequalities were found in Kinshasa, Luanda, Abidjan, and Addis Ababa in the most recent survey. The difference between the poorest quintile and the richest quintile was as much as 108 deaths per 1,000 live births (95% confidence interval 55 to 166) in Abidjan in 2011–2012. When comparing inequalities across cities or over time, confidence intervals of all measures almost always overlap. Nevertheless, inequalities appear to have increased in Abidjan, while they appear to have decreased in Cairo, Lagos, Dar es Salaam, Nairobi and Dakar.ConclusionsConsiderable inequalities exist in almost all cities but the level of inequalities and their development over time appear to differ across cities. This implies that inequalities are amenable to policy interventions and that it is worth investigating why inequalities are higher in one city than in another. However, larger samples are needed in order to improve the certainty of our results. Currently available data samples from DHS are too small to reliably quantify the level of inequalities within cities.
The multivariate adaptive exponentially weighted moving average control chart (MAEWMA) can detect shifts of different sizes while diminishing the inertia problem to a large extent. Although it has several advantages compared to various multivariate charts, previous literature has not considered its performance when the parameters are estimated. In this study, the performance of the MAEWMA chart with estimated parameters is studied while considering the practitioner-topractitioner variation. This kind of variation occurs due to using different Phase I samples by different practitioners in estimating the unknown parameters. The simulation results in this paper show that estimating the parameters results in extensively excessive false alarms and as a result a large number of Phase I samples is needed to achieve the desired incontrol performance. Using small number of Phase I samples in estimating the parameters may result in an in-control ARL distribution that almost completely lies below the desired value. To handle this problem, we strongly recommend the use of a bootstrap-based algorithm to adjust the control limit of the MAEWMA chart. This algorithm enables practitioners to achieve, with a certain probability, an in-control ARL that is greater than or equal to the desired value while using the available number of Phase I samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.