Inflammation is viewed as one of the major causes for the development of different diseases like cancer, cardiovascular disease, diabetes, obesity, osteoporosis, rheumatoid arthritis, inflammatory bowel disease, asthma, and CNS related diseases such as depression and parkinson's disease; and this fervent phenomenon provides space for understanding different inflammatory markers. Increasing evidences have elucidated the outcome of inflammatory pathways dysregulation resulting in many symptoms of chronic diseases. The detection of transcription factors such as nuclear factor kappa-B (NF-κB), STAT and their gene products such as COX-2, cytokines, chemokines and chemokine receptors has laid molecular foundation for the important role of inflammation in chronic diseases in which the NF-κB is reported as a major mediator which makes a possible way for the development of new therapeutic approaches using synthetic and natural compounds that might eventually decrease the prevalence of these diseases. Even if many inflammatory markers like TNF-α, IL-1, IL-6, IL-8 and C-reactive protein (CRP) are reported to be the major key factors with proved role in several inflammatory diseases, IL-1 and TNF-α are the important cytokines that can induce the expression of NF-κB which is the potential target in these inflammatory diseases. This review aims to explore and summarize that how some drugs and natural compounds show their modulatory activity in inflammatory pathways and chronic inflammatory markers in these inflammatory diseases.
Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.
The overall schematic representation of V2O5 NPs depicting their anti-angiogenic and anti-cancer activities with increased survivability in melanoma bearing mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.