Organic carbonyl molecules have recently been investigated as redox-active electrode materials in rechargeable organic batteries (ROBs), and although redox-active polymers offer high specific energy density and tunable redox potential windows, their undesirable dissolution into aprotic electrolytes during charge/discharge cycling and their poor electronic conductivity compromised their utilization in ROBs. To overcome these challenges, we synthesized, for the first time, two 3,4:9,10-perylenetetracarboxylic dianhydride (PTCDA)-based polyimides, namely, perylenediimide-benzidine (PDI-Bz) and perylenediimide-urea (PDI-Ur), and utilized them as organic cathode materials for lithium-ion batteries and sodium-ion batteries. These cathode materials are synthesized through imidization of a non-bay-substituted PTCDA unit by using bifunctional amine compounds (i.e., benzidine and carbonyl diamine (urea)) via a simple one-step reaction. Our organic metal-ion batteries employing PDI-Bz demonstrate a high discharge capacity of 120 mAh/g (with a reversible capacity of ∼54 mAh/g) vs Li + /Li and the second discharge capacity of 111 mAh/g (∼74 mAh/g) vs Na + /Na with two discharge voltage plateaus in the range of 1.9−2.4 V. The cells retained a capacity retention of 46% vs Li + /Li and 55.2% vs Na + /Na over 50 cycles. PDI-Ur exhibits higher lithiation capacity of ∼119 mAh/g at the 14th cycling (increased discharge capacity of ∼118 mAh/g at the 25th cycling). In SIBs, PDI-Ur shows an initial discharge capacity of ∼119 mAh/g with a single discharge voltage plateau around 1.9 V vs Na + /Na and the capacity retention of ∼78.7% (∼93 mAh/g) over 50 cycles, both of which are suggesting a potential feasibility of these PTCDA-based polyimides as promising organic cathode materials for high-capacity metal-ions batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.