In order to build a stable and reliable system for the Amazon Robotics Challenge we went through a detailed study of the performance and system requirements based on the rules and our past experience of the challenge. The challenge was to build a robot that integrates grasping, vision, motion planning, among others, to be able to pick items from a shelf to specific order boxes. This paper presents the development process including component selection, module designs, and deployment. The resulting robot system has dual 6 degrees of freedom industrial arms mounted on fixed bases, which in turn are mounted on a calibrated table. The robot works with a custom-designed top-open extendable shelf. The vision system uses multiple stereo cameras mounted on a fixed calibrated frame. Feature-based comparison and machine-learning based matching are used to identify and determine item pose. The gripper system uses suction cup and the grasping strategy is pick from the top. Error recovery strategies were also implemented to ensure robust performance. During the competition, the robot was able to pick all target items with the shortest amount of time.
Multi-light acquisitions and modeling are well-studied techniques for characterizing surface geometry, widely used in the cultural heritage field. Current systems that are used to perform this kind of acquisition are mainly free-form or dome-based. Both of them have constraints in terms of reproducibility, limitations on the size of objects being acquired, speed, and portability. This paper presents a novel robotic arm-based system design, which we call LightBot, as well as its applications in reflectance transformation imaging (RTI) in particular. The proposed model alleviates some of the limitations observed in the case of free-form or dome-based systems. It allows the automation and reproducibility of one or a series of acquisitions adapting to a given surface in two-dimensional space.
This paper presents the methods that have participated in the SHREC'20 contest on retrieval of surface patches with similar geometric reliefs and 1 the analysis of their performance over the benchmark created for this challenge. The goal of the context is to verify the possibility of retrieving 3D models only based on the reliefs that are present on their surface and to compare methods that are suitable for this task. This problem is related to many real world applications, such as the classification of cultural heritage goods or the analysis of different materials. To address this challenge, it is necessary to characterize the local "geometric pattern" information, possibly forgetting model size and bending. Seven groups participated in this contest and twenty runs were submitted for evaluation. The performances of the methods reveal that good results are achieved with a number of techniques that use different approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.