The chromadorea abundant larval transcript (ALT) family of proteins contains ALT one of the most studied putative vaccine candidate in experimental filariasis. This study reports the characterization of Wuchereria bancrofti 20/22 (Wb20/22) as a member of chromadorea, the ALT family of proteins from the L3 stage of W. bancrofti. The high reactivity with serum from the endemic normal (EN) population suggests that Wb20/22 could be a target of elicit protective immunity. The glutamic acid-rich region of Wb20/22 was predicted to harbour the longest linear B-cell epitope by insilico prediction tools. The significance of this region was revealed by studying the mutant form of Wb20/22, without acidic domain (WOAD) which was cloned, and the immune response was compared with Wb20/22. The signal sequence of Wb20/22 was also an immunodominant region, and mutant construct without signal sequence (WOSS) was cloned and characterized. The peak antibody titre elicited by WOAD was higher than Wb20/22 or WOSS, which pointed to the immunomodulatory role of glutamic acid-rich region. Wb20/22 elicited very high levels of IL-10 and diminished levels of IL-4 and IL-5 which could be the reason for low antibody titre. The prophylactic efficacy of WOAD conferred protection (62·26%) which was higher than Wb20/22 (49·82%) and WOSS (54·78%).
Filariasis caused by infectious parasitic nematodes has been identified as the second leading source of permanent and long-term disability in Sub-Saharan Africa, Asia and Latin America. Several vaccine candidates were identified from infective third-stage larvae (L3) which involves in the critical transition from arthropod to human. Hitherto studies of these antigens in combination with alum adjuvant have shown to elicit its characteristic Th2 responses. Inulin is a safe, non-toxic adjuvant that principally stimulates the innate immune response through the alternative complement pathway. In the present study, the immune response elicited by inulin and alum as adjuvants were compared with filarial antigens from different aetiological agents: secreted larval acidic protein 1 (SLAP1) from Onchocerca volvulus and venom allergen homologue (VAH) from Brugia malayi as single or as cocktail vaccines in mice model. The study revealed that inulin can induce better humoral response against these antigens than alum adjuvant. Antibody isotyping disclosed inulin's ability to elevate the levels of IgG2a and IgG3 antibodies which mediates in complement-dependent cytotoxicity and antibody-dependent cell-mediated cytotoxicity (ADCC), respectively, in mice. Splenocyte analysis showed that T cells prestimulated with inulin have higher stimulation index (P < 0.05) than alum except for BmVAH antigen. In vitro ADCC assay showed that inulin formulation had induced higher cytotoxicity with filarial antigens (as single P < 0.01 and as cocktail P < 0.05, respectively) than alum. The results had confirmed the capability of inulin to deplete the levels of Treg and brought a balance in Th1/Th2 arms against filarial antigens in mice.
Human lymphatic filariasis, the parasitic disease caused by the filarial nematodes Wuchereria bancrofti, Brugia malayi, and Brugia timori, is ranked as the second most complex clinical condition leading to permanent and long-term disability. The multiple antigen peptide (MAP) approach is an effective method to chemically synthesize and deliver multiple T and B cell epitopes as the constituents of a single immunogen. Here, we report on the design, chemical synthesis, and immunoprophylaxis of three epitopes that have been identified from promising vaccine candidates reported in our previous studies, constructed as MAP on an inert lysine core for human lymphatic filariasis in Jird model. Two epitopes from Thioredoxin and one epitope from Transglutaminase were constructed as MAP in an inert lysine core. The immunoprophylaxis of the synthetic vaccine construct studied in Jird models showed protective antibody (1 in 64,000 titer) and cellular immune response. Thioredoxin-Transglutaminase MAP (TT MAP) conferred a significantly high protection of 63.04% compared to control (8.5%). Multi-antigen peptide vaccine is one best approach to provide immunity against multiple antigens delivered by the complex filarial parasite.
Filarial thiordoxin peroxidase is a major antioxidant that plays a crucial role in parasite survival. Although Brugia malayi TPx has been shown to be a potential vaccine candidate, it shares 63% homology with its mammalian counterpart, limiting its use as a vaccine or drug target. In silico analysis of TPx sequence revealed a linear B epitope in the host's nonhomologous region. The peptide sequence (TPx peptide(27-48)) was synthesized, and its reactivity with clinical sera from an endemic region was analyzed. The peptide showed significantly high reactivity (P < 0.05) against the sera of putatively immune individuals compared to the nonendemic control sera. It also showed high reactivity against the sera of patients with chronic pathology and patent infection. The high reactivity of the peptide with endemic immune sera equivalent to that of whole protein shows that it forms a dominant B epitope of TPx protein and thus could be utilized for incorporation into a multiepitope vaccine construct for filariasis.
Filarial parasites infected nearly 160 million of the global population with onchocerciasis and lymphatic filariasis, and further, a billion of people are estimated to be at risk of infection, rendering them among the most prevalent infectious agents in the world today. Given the complexity of their life cycle and the immune evasion mechanisms of these organisms, development of a vaccine remains to be a long-term challenge. Though a number of immunodominant antigens have been characterized, the presence of homologous proteins in humans or the allelic variants are some of the major drawbacks. One of the extensively studied vaccine candidates is abundant larval transcripts (ALT) family of proteins for the following properties: highly regulated expression, abundance, excreted-secreted product of infective stage larvae, and essentially for parasite establishment and survival in the host. In the present study, stage-specific expression of secreted larval acidic protein 1 (SLAP1) was identified; an ALT orthologue from Onchocerca volvulus was cloned, expressed, and purified as a recombinant protein. Immunogenicity of OvSLAP1 was demonstrated with sera and peripheral blood mononuclear cells from endemic regions of Brugia malayi and Wuchereria bancrofti. OvSLAP1 antibodies were predominated by IgG1 and IgG2 in endemic normal (EN) and chronic pathology (CP) subjects. It has also induced marked cellular response as observed by lymphoproliferation assay. The study revealed that OvSLAP1 can segregate humoral (EN mean optical density (OD) = 0.87 ± 0.035, CP mean OD = 0.59 ± 0.029) and cellular (EN mean stimulation index (SI) = 5.87 ± 0.167, CP mean SI = 3.5 ± 0.134) immune responses between EN and CP individuals (P < 0.001), signifying its prophylactic ability and vitality for protection from filarial infections in endemic population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.