Allergic rhinitis (AR) is an atopic disease which affects about 600 million people worldwide and results from a complex interplay between genetic and environmental factors. However genetic association studies on known candidate genes yielded variable results. The aim of this study is to identify the genetic variants that influence predisposition towards allergic rhinitis in an ethnic Chinese population in Singapore using a genome-wide association study (GWAS) approach. A total of 4461 ethnic Chinese volunteers were recruited in Singapore and classified according to their allergic disease status. The GWAS included a discovery stage comparing 515 atopic cases (including 456 AR cases) and 486 non-allergic non-rhinitis (NANR) controls. The top SNPs were then validated in a replication cohort consisting of a separate 2323 atopic cases (including 676 AR cases) and 511 NANR controls. Two SNPs showed consistent association in both discovery and replication phases; MRPL4 SNP rs8111930 on 19q13.2 (OR = 0.69, Pcombined = 4.46×10−05) and BCAP SNP rs505010 on chromosome 10q24.1 (OR = 0.64, Pcombined = 1.10×10−04). In addition, we also replicated multiple associations within known candidates regions such as HLA-DQ and NPSR1 locus in the discovery phase. Our study suggests that MRPL4 and BCAP, key components of the HIF-1α and PI3K/Akt signaling pathways respectively, are two novel candidate genes for atopy and allergic rhinitis. Further study on these molecules and their signaling pathways would help in understanding of the pathogenesis of allergic rhinitis and identification of targets for new therapeutic intervention.
BackgroundRecent genome-wide association studies (GWAS) for asthma have been successful in identifying novel associations which have been well replicated. The aim of this study is to identify the genetic variants that influence predisposition towards asthma in an ethnic Chinese population in Singapore using a GWAS approach.MethodsA two-stage GWAS was performed in case samples with allergic asthma, and in control samples without asthma and atopy. In the discovery stage, 490 case and 490 control samples were analysed by pooled genotyping. Significant associations from the first stage were evaluated in a replication cohort of 521 case and 524 control samples in the second stage. The same 980 samples used in the discovery phase were also individually genotyped for purposes of a combined analysis. An additional 1445 non-asthmatic atopic control samples were also genotyped.Results19 promising SNPs which passed our genome-wide P value threshold of 5.52 × 10-8 were individually genotyped. In the combined analysis of 1011 case and 1014 control samples, SNP rs2941504 in PERLD1 on chromosome 17q12 was found to be significantly associated with asthma at the genotypic level (P = 1.48 × 10-6, ORAG = 0.526 (0.369-0.700), ORAA = 0.480 (0.361-0.639)) and at the allelic level (P = 9.56 × 10-6, OR = 0.745 (0.654-0.848)). These findings were found to be replicated in 3 other asthma GWAS studies, thus validating our own results. Analysis against the atopy control samples suggested that the SNP was associated with allergic asthma and not to either the asthma or allergy components. Genotyping of additional SNPs in 100 kb flanking rs2941504 further confirmed that the association was indeed to PERLD1. PERLD1 is involved in the modification of the glycosylphosphatidylinositol anchors for cell surface markers such as CD48 and CD59 which are known to play multiple roles in T-cell activation and proliferation.ConclusionsThese findings reveal the association of a PERLD1 as a novel asthma candidate gene and reinforce the involvement of genes on the 17q12-21 chromosomal region in the etiology of asthma.
BackgroundThe International Hapmap project serves as a valuable resource for human genome variation data, however its applicability to other populations has yet to be exhaustively investigated. In this paper, we use high density genotyping chips and resequencing strategies to compare the Singapore Chinese population with the Hapmap populations. First we compared 1028 and 114 unrelated Singapore Chinese samples genotyped using the Illumina Human Hapmap 550 k chip and Affymetrix 500 k array respectively against the 270 samples from Hapmap. Secondly, data from 20 candidate genes on 5q31-33 resequenced for an asthma candidate gene based study was also used for the analysis.ResultsA total of 237 SNPs were identified through resequencing of which only 95 SNPs (40%) were in Hapmap; however an additional 56 SNPs (24%) were not genotyped directly but had a proxy SNP in the Hapmap. At the genome-wide level, Singapore Chinese were highly correlated with Hapmap Han Chinese with correlation of 0.954 and 0.947 for the Illumina and Affymetrix platforms respectively with deviant SNPs randomly distributed within and across all chromosomes.ConclusionsThe high correlation between our population and Hapmap Han Chinese reaffirms the applicability of Hapmap based genome-wide chips for GWA studies. There is a clear population signature for the Singapore Chinese samples and they predominantly resemble the southern Han Chinese population; however when new migrants particularly those with northern Han Chinese background were included, population stratification issues may arise. Future studies needs to address population stratification within the sample collection while designing and interpreting GWAS in the Chinese population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.