In this paper, we study the problem of finite-time stability and passivity criteria for discrete-time neural networks (DNNs) with variable delays. The main objective is how to effectively evaluate the finite-time passivity conditions for NNs. To achieve this, some new weighted summation inequalities are proposed for application to a finite-sum term appearing in the forward difference of a novel Lyapunov-Krasovskii functional, which helps to ensure that the considered delayed DNN is passive. The derived passivity criteria are presented in terms of linear matrix inequalities. A numerical example is given to illustrate the effectiveness of the proposed results.
This paper examines the problem of asymptotic stability for Markovian jump generalized neural networks with interval time-varying delays. Markovian jump parameters are modeled as a continuous-time and finite-state Markov chain. By constructing a suitable Lyapunov-Krasovskii functional (LKF) and using the linear matrix inequality (LMI) formulation, new delay-dependent stability conditions are established to ascertain the mean-square asymptotic stability result of the equilibrium point. The reciprocally convex combination technique, Jensen's inequality, and the Wirtinger-based double integral inequality are used to handle single and double integral terms in the time derivative of the LKF. The developed results are represented by the LMI. The effectiveness and advantages of the new design method are explained using five numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.