A new organo-inorganic hybrid electrochromic material poly(cyclotriphosphazene-4,4 0 -bipyridinium)chloride salt was synthesized wherein each phosphorus atom in the triphosphazene core is linked by diquaternized 4,4 0 -bipyridyls (PPBP). The electrochrome was characterized by 31 P nuclear magnetic resonance, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). XPS confirmed the formation of P-N + and P-N linkages in the PPBP and the conversion of covalently bound Cl to ionic Cl À species. The transparent PPBP material undergoes three reversible one electron-transfer reactions to yield a radical cation insoluble film which first acquires a purple hue and then turns deep blue. Electrochromic devices were constructed with the PPBP hybrid dissolved in a highly conductive, thermally stable and electrochemically inert ionic liquid based gel electrolyte and a Prussian blue (PB) layer as the anode. The PPBP-PB device showed an extremely large coloration efficiency of 504 cm 2 C À1 , an exceptionally high transmission modulation of 70.5% at 590 nm, one among the highest reported contrasts in organic electrochromics, a large reflectance contrast of 59.2% at 545 nm and fast switching kinetics. The device was durable as it retained 96.2% of its original transmission after 1000 color-bleach cycles, thus exemplifying its use for both reflective and transmissive electrochromic applications.Electrochemical impedance studies revealed charge transfer to be a less resistive process during reduction relative to oxidation which cumulatively ensues in shorter coloration times. Our studies demonstrate the yet untapped potential of the inorganic (PNCl 2 ) 3 in steering the synthesis of new organo-inorganic hybrid materials, capable of undergoing facile redox phenomena, manifesting in unequalled functional properties and thereby offering opportunities to use this trimer for preparing a whole gamut of new high performance electroactive compounds.
Polymer electrolytes were synthesized by two different approaches and applied to electrochromic devices based on electrodeposited tungsten oxide (WO 3) or poly(3,4-ethylenedioxythiophene) (PEDOT) films as the cathode, and a Prussian blue (PB) film as the anode. The first method involved the entrapping of an ionic liquid in a polymer host (poly(methylmethacrylate) or PMMA) and the second approach relied on the in situ thermal polymerization of methylmethacrylate (MMA) in the hydrophobic ionic liquid, yielding a solidified transparent gel. The effect of in situ solid polymer electrolyte formation on device performance characteristics was realized in terms of a larger coloration efficiency of 119 cm 2 C 21 (l = 550 nm) achieved for the WO 3-PB (MMA) device, as compared to a value of 54 cm 2 C 21 obtained for the WO 3-PB (PMMA) device. Similar enhancements in electrochromic coloring efficiency, reflectance contrast, and faster switching kinetics were obtained for the PEDOT-PB (MMA) device. The strategy of introducing an electrolyte to the electrochromic device in a liquid state and then subjecting the same to gradual polymerization allows greater accessibility of the electrolyte ions to the active sites on the electrochromic electrodes and superior interfacial contact. As a consequence, larger optical contrast and faster kinetics are achieved in the MMA based devices. While PEDOT films were amorphous, PB films were semi-crystalline but only in the case of WO 3 ; the hexagonal structure of WO 3 , equipped with three/four/six-coordinated voids was found to affect bleaching kinetics favorably. The performance of PMMA based electrolyte is limited by high resistance at the electrode-electrolyte interface, and a smaller number of ions available for oxidation and reduction. Large area (y10 cm 6 4 cm) devices were also fabricated using this simple wet chemistry method and their ability to color uniformly without any pinholes was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.