Cyclotriazadisulfonamide prevents HIV entry into cells by down-modulating surface CD4 receptor expression through binding to the CD4 signal peptide. According to a two-site binding model, 28 new unsymmetrical analogues bearing a benzyl tail group and nine bearing a cyclohexylmethyl tail have been designed and synthesized. The most potent new CD4 down-modulator (40 (CK147); IC50 63 nM) has a 4-dimethylaminobenzenesulfonyl side arm. One of the two side arms was varied with substituents in different positions. This gave a range of CD4 down-modulation potencies that correlated well with anti-HIV-1 activities. The side arms of 21 of the new benzyl-tailed analogues were modeled by means of quantum mechanical calculations. For CADA analogues with arenesulfonamide side arms, the pIC50 values for CD4 down-modulation correlated with the component of the electric dipole moment in the aromatic ring, suggesting that an attractive electronic interaction is a major factor determining the stability of the complex between the molecule and its target.
A robust, catalytic enantioselective method to construct challenging, biologically relevant, tertiary ether stereocenters has been developed. The process capitalizes on readily accessible bis(oxazoline) ligands to control the facial selectivity of the addition of copper acetylides to benzopyrylium triflates, reactive species generated in situ. Up to 99%, enantiomeric excesses are achieved with a broad substrate scope. Using density functional theory (DFT) calculations, the origin of the experimentally observed enantiocontrol was attributed to additional noncovalent interactions observed in the transition state, leading to the major enantiomer, such as π-stacking. The resultant substrates have direct applications in the synthesis of naturally occurring bioactive chromanones and tetrahydroxanthones.
Select dimeric chromenones exhibit low micromolar cytotoxicity toward lymphoma and leukemia cell lines, L5178Y and HL60, respectively. The bioactive dimeric chromenones were identified from a focused library of structurally simplified derivatives of naturally occurring dimeric chromenones and tetrahydroxanthones that was prepared as part of this study. The simple dimeric chromenone scaffolds contain no stereogenic centers, are easily synthesized, and may be utilized as lead compounds in cancer research and drug discovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.