Mosquito-borne diseases are a major threat to human health and are responsible for millions of deaths globally each year. Vector control is one of the most important approaches used in reducing the incidence of these diseases. However, increasing mosquito resistance to chemical insecticides presents challenges to this approach. Therefore, new strategies are necessary to develop the next generation vector control methods. Because of the target specificity of dsRNA, RNAi-based control measures are an attractive alternative to current insecticides used to control disease vectors. In this study, Chitosan (CS) was cross-linked to sodium tripolyphosphate (TPP) to produce nano-sized polyelectrolyte complexes with dsRNA. CS-TPP-dsRNA nanoparticles were prepared by ionic gelation method. The encapsulation efficiency, protection of dsRNA from nucleases, cellular uptake, in vivo biodistribution, larval mortality and gene knockdown efficiency of CS-TPP-dsRNA nanoparticles were determined. The results showed that at a 5:1 weight ratio of CS-TPP to dsRNA, nanoparticles of less than 200 nm mean diameter and a positive surface charge were formed. Confocal microscopy revealed the distribution of the fed CS-TPP-dsRNA nanoparticles in midgut, fat body and epidermis of yellow fever mosquito, Aedes aegypti larvae. Bioassays showed significant mortality of larvae fed on CS-TPP-dsRNA nanoparticles. These assays also showed knockdown of a target gene in CS-TPP-dsRNA nanoparticle fed larvae. These data suggest that CS-TPP nanoparticles may be used for delivery of dsRNA to mosquito larvae.
Asian Longhorned Beetle (ALB) Anoplophora glabripennis is a serious invasive forest pest in several countries including the United States, Canada, and Europe. RNA interference (RNAi) technology is being developed as a novel method for pest management. Here, we identified the ALB core RNAi genes including those coding for Dicer, Argonaute, and double-stranded RNA-binding proteins (dsRBP) as well as for proteins involved in dsRNA transport and the systemic RNAi. We also compared expression of six potential reference genes that could be used to normalize gene expression and selected gapdh and rpl32 as the most reliable genes among different tissues and stages of ALB. Injection of double-stranded RNA (dsRNA) targeting gene coding for inhibitor of apoptosis (IAP) into larvae and adults resulted in a significant knockdown of this gene and caused the death of 90% of the larvae and 100% of adults. No mortality of both larvae and adults injected with dsRNA targeting gene coding for green fluorescence protein (GFP, as a negative control) was observed. These data suggest that functional RNAi machinery exists in ALB and a potential RNAi-based method could be developed for controlling this insect.
Developing safe and effective double-stranded RNA (dsRNA) delivery systems remains a major challenge for gene silencing, especially in lepidopteran insects. This study evaluated the protamine sulfate (PS)/lipid/dsRNA nanoparticle (NP) delivery system for RNA interference (RNAi) in cells and larvae of the fall armyworm (FAW), Spodoptera frugiperda, a major worldwide pest. A highly efficient gene delivery formulation was prepared using a cationic biopolymer, PS, and a cationic lipid, Cellfectin (CF), complexed with dsRNA. The NPs were prepared by a two-step self-assembly method. The formation of NPs was revealed by dynamic light scattering and transmission electron microscopy. The formation of CF/dsRNA/PS NPs was spherical in shape and size, ranging from 20 to 100 nm with a positive charge (+23.3 mV). Interestingly, prepared CF/dsRNA/PS NPs could protect dsRNA (95%) from nuclease degradation and thus significantly improve the stability of dsRNA. Formulations prepared by combining EGFP DNA with CF/PS increased transfection efficiency in Sf9 cells compared to PS/EGFP and CF/EGFP NPs. Also, the PS/CF/dsRNA NPs enhanced the endosomal escape for the intracellular delivery of dsRNA. The gene knockdown efficiency was assessed in Sf9 Luciferase (Luc) stable cells after a 72 h incubation with CF/dsRNA/PS, PS/dsRNA, CF/dsRNA, or naked dsRNA. Knockdown of the Luc gene was detected in CF/dsRNA/PS (76%) and PS/dsRNA (42.4%) not CF/dsRNA (19.5%) and naked dsRNA (10.3%) in Sf9 Luc cells. Moreover, CF/dsIAP/PS (25 μg of dsRNA targeting the inhibitor of apoptosis, IAP, gene of FAW) NPs showed knockdown of the IAP gene (39.5%) and mortality (55%) in FAW larvae. These results highlight the potential application of PS/lipid/dsRNA NPs for RNA-mediated control of insect pests.
Developing strategies to optimize double-stranded RNA (dsRNA) delivery remains a significant challenge in improving RNA interference (RNAi) in insects. Nanoformulations may provide an avenue for the safe and effective delivery of dsRNA. We investigated nanoparticle-mediated gene silencing using biodegradable polymers, poly-L-lysine (PLL), and polyphenol (−)-epigallocatechin gallate (EGCG) for dsRNA delivery into Spodoptera frugiperda (Sf9) cells. Negatively charged cores were formed by EGCG and dsRNA complexes, and PLL was used to encapsulate the cores. The nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and energy-dispersive spectrometry (EDS) analysis. The stability of the nanoparticles was assessed by incubating them in nuclease-containing Sf9 cell conditioned media. The effectiveness of the nanoparticles was investigated in Sf9 cells stably expressing the luciferase gene. The results revealed that the nanoparticles formed were small and spherical. The PLL/EGCG/dsRNA nanoparticles exhibited better stability compared to that of PLL/dsRNA or naked dsRNA. Nanoparticles prepared with dsRNA targeting the luciferase gene induced an efficient knockdown (66.7%) of the target gene. In Sf9 cells, nanoparticles prepared with Cy3-or CyPHer-5E-labeled dsRNA showed higher cellular uptake and endosomal escape, respectively, than the naked dsRNA. The improvement in uptake and cytosolic delivery may have helped to increase the knockdown efficiency. In Sf9 cells, the nanoparticles prepared with dsRNA targeting the inhibitor of apoptosis gene induced apoptosis by knocking down its expression. In conclusion, we demonstrate that PLL/EGCG/dsRNA nanoparticles are stable, highly efficient, and effective in dsRNA delivery and knockdown of the target gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.