Mold-metal interface heat transfer coefficient values need to be determined precisely to accurately predict thermal histories at different locations in automotive castings. Thermomechanical simulations were carried out for Al-Si alloy casting processes using a commercial code. The cooling curve results were validated with experimental data from the literature for a cylindricalshaped casting. Our analysis indicates that the interface heat transfer coefficient (IHTC) initial value choice between chill-metal and the sand mold-metal interfaces has a marked effect on the cooling curves. In addition, after choosing an IHTC initial value, the solidification rates of the alloy near the chill-metal interfaces varied during subsequent cooling when the gap began to form. However, the gap formation, which results in an IHTC change from the initial value, does not affect the cooling curves within the vicinity of the sand-metal interface. Optimized initial IHTC values of 3000 and 7000 W m À2 -K À1 were determined for a sand-metal interface and a chill (steel or copper)-metal interfaces, respectively. The initial IHTC had a significant effect on the prediction of secondary dendrite arm spacing (SDAS) (varying between approximately 15 microns and 70 microns) and ultimate tensile strength (UTS) (varying between approximately 250 MPa and 370 MPa) for initial IHTC values that were less than the optimized value of 7000 W m À2 K À1 for the chill-metal interfaces.
Near-net shape casting having complex geometry is manufactured through the sand casting process. However, day by day, the availability of natural or synthetic silica sand has been decreasing and increasing the production cost of sand casting components. Therefore, there is a need to look into low-cost and readily available alternative materials to substitute the commercial-grade silica sand for the sand mould casting process. The constituent of silica sand is primarily silica (SiO 2 ), Al 2 O 3 , and Fe 2 O 3 . The major constituents of industrial wastes such as fly ash, blast furnace slag, ferrochrome slag, stone dust, and red mud have SiO 2 , Al 2 O 3 , and Fe 2 O 3 . Therefore, industrial wastes may be used individually or combined with silica sand at a different ratio to substitute the commercialgrade silica sand in green mould castings. Researchers and scientists have evaluated the suitability of industrial wastes and local riverbed sand as an alternative material for green sand mould castings. The present review summarizes the advantages and constraints of using industrial wastes and local riverbed sand as an alternative to green sand mould casting process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.