Pulses are important sources of proteins in vegetarian diet. However, genetic improvement in production and productivity of pulse crops has been very slow owing to several constraints. The present view of researchers is that the effectiveness and efficiency of conventional breeding can be significantly improved by using molecular markers. Nowadays, molecular markers are routinely utilized worldwide in all major crops as a component of breeding. The pace of development of molecular markers and other genomic sources has been accelerated in chickpea, pigeon pea and some other pulses, and marker-trait associations have been established for a number of important agronomic traits. The efforts are underway to use high-throughput genotyping platforms besides developing more genomic resources in other pulses. So far, progress in the use of marker-assisted selection as a part of pulse breeding programmes has been very slow and limited to few pulse crops such as chickpea and common bean. In this article, we have reviewed the progress made, limitations encountered and future possibilities for the application of marker-assisted selection in the genetic improvement of pulse crops.
Food legumes are the main source of dietary protein for a large part of the world's population, and also play an important role in maintaining soil fertility through nitrogen fixation. However, legume yields and production are often limited by large genotype × environment (G × E) interactions that influence the expression of agronomically important, complex quantitative traits. Consequently, genetic improvement has been slower than expected. Molecular marker technology enables genetic dissection of such complex traits, allowing breeders to identify genomic regions on the chromosome that have main effects or interactive effects. A number of genomic resources have been developed in several legume species during the last two decades, and provide a platform for exploiting marker technology. The present paper reviews the available genomic resources in food legumes: linkage maps, high-throughput sequencing technologies, expression sequence tag (EST) databases, genome sequences, DNA chips, targeting induced local lesions in genomes (TILLING), bacterial artificial chromosome (BAC) libraries and others. It also describes how these resources are being used to tag and map genes/quantitative trait loci (QTLs) for domesticated and other agronomically important traits. This information is important to genetic improvement efforts aiming at improving food and nutrition security worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.