Organic farming is believed by many to be an environmentally friendly production system that promotes the use of local forage while strongly limiting the input of chemicals, including allopathic treatments. As organic dairy farming has grown, farmers have realised that many available conventional breeds of cow are not well adapted to the new situations and that more ‘robust’ cows, able to function well in the constraining organic environment, are needed to yield acceptable longevity and productivity. In this review paper, the current breed diversity in organic dairy farming is analysed with the aim of identifying the types of cow that would best fulfil organic breeding goals. Unlike the conventional sector, organic dairy farming is very heterogeneous and no single type of cow can adapt well to all scenarios. There are advantages and disadvantages to the use of existing breeds (rustic Holstein-Friesian, other rustic breeds and crosses), and strong genotype × environment interactions demand different strategies for very diverse situations. Organic dairy farms producing milk for systems that recompense milk volume would benefit from using higher milk yielding cows, and rustic Holstein-Friesian cows may be the best option in such cases. Although most Holstein-Friesian cows are currently selected for use in conventional systems, this situation could be reversed by the implementation of an organic merit index that includes organic breeding goals. Farms producing milk either for systems that recompense milk solids or for transformation into dairy products would benefit from using breeds other than Holstein-Friesian or their crosses. Organic farmers who focus on rural tourism, farm schools or other businesses in which marketing strategies must be taken into account could benefit from using local breeds (when possible) or other rustic breeds that are highly valued by consumers.
Cow routines and behavioral responses are altered substantially following the installation of robot milking. The present study was designed to analyze the effect that switching from milking parlor to automatic milking system (AMS) had on the culling rate (due to various causes) of dairy cattle. For this purpose, culling records and causes for culling were tracked in 23 dairy farms in the Galicia region (NW Spain). The animals in these farms were monitored for 5 years. For the present study, that length of time was divided into three different stages, as follows: 2 years before switching from a milking parlor to AMS (stage 1), the 1st year following the implementation of AMS (stage 2) and the 2nd and 3rd years succeeding the implementation of AMS (stage 3). Cox models for survival analysis were used to estimate the time to culling due to different reasons during stage 1 in relation to stages 2 and 3. The data indicated that the risk of loss due to death or emergency slaughter decreased significantly following the installation of AMS. In contrast, the risk of culling due to low production, udder problems, infertility or lameness increased significantly. Low-production cows (such as cows in advanced lactation due to infertility) or sick cows (such as mastitic or lame cows) allegedly have a noticeable effect both on the performance and the amortization of the cost of AMS, which in turn would lead to a higher probability of elimination than in conventional systems.
This study was designed to analyse the evolution in the use of beef bull semen for dairy cattle insemination and, mainly, to assess calving difficulty, gestation length and proportion of stillbirths after breeding pure Holsteins or crossbreeding. Between the latter two, pure Holstein had the shortest gestation length. Calving difficulty and gestation length decreased as the age of the dam advanced. The most difficult calvings were observed in twin calvings, followed by the calvings of male calves and female calves. The gestations leading to the birth of male calves were longer than those leading to female calves and twin calves. Stillbirths were not related to the breed used for mating. Through examining these parameters, sire breed should be considered when selecting a beef breed for the insemination of milk-producing dams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.