Background The worst Ebola virus disease (EVD) outbreak in history has resulted in more than 28,000 cases and 11,000 deaths. We present the final results of two phase 1 trials of an attenuated, replication-competent, recombinant vesicular stomatitis virus (rVSV)–based vaccine candidate designed to prevent EVD. Methods We conducted two phase 1, placebo-controlled, double-blind, dose-escalation trials of an rVSV-based vaccine candidate expressing the glycoprotein of a Zaire strain of Ebola virus (ZEBOV). A total of 39 adults at each site (78 participants in all) were consecutively enrolled into groups of 13. At each site, volunteers received one of three doses of the rVSV-ZEBOV vaccine (3 million plaque-forming units [PFU], 20 million PFU, or 100 million PFU) or placebo. Volunteers at one of the sites received a second dose at day 28. Safety and immunogenicity were assessed. Results The most common adverse events were injection-site pain, fatigue, myalgia, and headache. Transient rVSV viremia was noted in all the vaccine recipients after dose 1. The rates of adverse events and viremia were lower after the second dose than after the first dose. By day 28, all the vaccine recipients had seroconversion as assessed by an enzyme-linked immunosorbent assay (ELISA) against the glycoprotein of the ZEBOV-Kikwit strain. At day 28, geometric mean titers of antibodies against ZEBOV glycoprotein were higher in the groups that received 20 million PFU or 100 million PFU than in the group that received 3 million PFU, as assessed by ELISA and by pseudovirion neutralization assay. A second dose at 28 days after dose 1 significantly increased antibody titers at day 56, but the effect was diminished at 6 months. Conclusions This Ebola vaccine candidate elicited anti-Ebola antibody responses. After vaccination, rVSV viremia occurred frequently but was transient. These results support further evaluation of the vaccine dose of 20 million PFU for preexposure prophylaxis and suggest that a second dose may boost antibody responses. (Funded by the National Institutes of Health and others; rVSVΔG-ZEBOV-GP ClinicalTrials.gov numbers, NCT02269423 and NCT02280408.)
Background The efficacy of public health measures to control the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has not been well studied in young adults. Methods We investigated SARS-CoV-2 infections among U.S. Marine Corps recruits who underwent a 2-week quarantine at home followed by a second supervised 2-week quarantine at a closed college campus that involved mask wearing, social distancing, and daily temperature and symptom monitoring. Study volunteers were tested for SARS-CoV-2 by means of quantitative polymerase-chain-reaction (qPCR) assay of nares swab specimens obtained between the time of arrival and the second day of supervised quarantine and on days 7 and 14. Recruits who did not volunteer for the study underwent qPCR testing only on day 14, at the end of the quarantine period. We performed phylogenetic analysis of viral genomes obtained from infected study volunteers to identify clusters and to assess the epidemiologic features of infections. Results A total of 1848 recruits volunteered to participate in the study; within 2 days after arrival on campus, 16 (0.9%) tested positive for SARS-CoV-2, 15 of whom were asymptomatic. An additional 35 participants (1.9%) tested positive on day 7 or on day 14. Five of the 51 participants (9.8%) who tested positive at any time had symptoms in the week before a positive qPCR test. Of the recruits who declined to participate in the study, 26 (1.7%) of the 1554 recruits with available qPCR results tested positive on day 14. No SARS-CoV-2 infections were identified through clinical qPCR testing performed as a result of daily symptom monitoring. Analysis of 36 SARS-CoV-2 genomes obtained from 32 participants revealed six transmission clusters among 18 participants. Epidemiologic analysis supported multiple local transmission events, including transmission between roommates and among recruits within the same platoon. Conclusions Among Marine Corps recruits, approximately 2% who had previously had negative results for SARS-CoV-2 at the beginning of supervised quarantine, and less than 2% of recruits with unknown previous status, tested positive by day 14. Most recruits who tested positive were asymptomatic, and no infections were detected through daily symptom monitoring. Transmission clusters occurred within platoons. (Funded by the Defense Health Agency and others.)
Several candidate vaccines against Shigella spp. are in development, but the lack of a clear correlate of protection from challenge with the induction of adequate immune responses among the youngest age groups in the developing world has hampered Shigella vaccine development over the past several decades. Bioconjugation technology, exploited here for an Shigella flexneri 2a candidate vaccine, offers a novel and potentially cost-effective way to develop and produce vaccines against a major pathogen of global health importance. Flexyn2a, a novel S. flexneri 2a bioconjugate vaccine made of the polysaccharide component of the S. flexneri 2a O-antigen, conjugated to the exotoxin protein A of Pseudomonas aeruginosa (EPA), was evaluated for safety and immunogenicity among healthy adults in a single-blind, phase I study with a staggered randomization approach. Thirty subjects (12 receiving 10 μg Flexyn2a, 12 receiving Flexyn2a with aluminum adjuvant, and 6 receiving placebo) were administered two injections 4 weeks apart and were followed for 168 days. Flexyn2a was well-tolerated, independently of the adjuvant and number of injections. The Flexyn2a vaccine elicited statistically significant S. flexneri 2a lipopolysaccharide (LPS)-specific humoral responses at all time points postimmunization in all groups that received the vaccine. Elicited serum antibodies were functional, as evidenced by bactericidal activity against S. flexneri 2a. The bioconjugate candidate vaccine Flexyn2a has a satisfactory safety profile and elicited a robust humoral response to S. flexneri 2a LPS with or without inclusion of an adjuvant. Moreover, the bioconjugate also induced functional antibodies, showing the technology's features in producing a promising candidate vaccine. (This study has been registered at ClinicalTrials.gov under registration no. NCT02388009.)
Enterotoxigenic (ETEC) is a global diarrheal pathogen that utilizes adhesins and secreted enterotoxins to cause disease in mammalian hosts. Decades of research on virulence factor regulation in ETEC has revealed a variety of environmental factors that influence gene expression, including bile, pH, bicarbonate, osmolarity, and glucose. However, other hallmarks of the intestinal tract, such as low oxygen availability, have not been examined. Further, determining how ETEC integrates these signals in the complex host environment is challenging. To address this, we characterized ETEC's response to the human host using samples from a controlled human infection model. We found ETEC senses environmental oxygen to globally influence virulence factor expression via the oxygen-sensitive transcriptional regulator fumarate and nitrate reduction (FNR) regulator. In vitro anaerobic growth replicates the in vivo virulence factor expression profile, and deletion of in ETEC strain H10407 results in a significant increase in expression of all classical virulence factors, including the colonization factor antigen I (CFA/I) adhesin operon and both heat-stable and heat-labile enterotoxins. These data depict a model of ETEC infection where FNR activity can globally influence virulence gene expression, and therefore proximity to the oxygenated zone bordering intestinal epithelial cells likely influences ETEC virulence gene expression in vivo. Outside of the host, ETEC biofilms are associated with seasonal ETEC epidemics, and we find FNR is a regulator of biofilm production. Together these data suggest FNR-dependent oxygen sensing in ETEC has implications for human infection inside and outside of the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.