The heat loss from cavity receiver in parabolic dish system determines the efficiency and cost effectiveness of the system. A modified three coil solar cavity receiver of inner wall area approximately three times of single coil receiver, is experimentally investigated to study the effect of fluid inlet temperature (Tfi=50°C to 75 °C) and cavity inclination angle (θ = 0° to 90°) on the heat loss from receiver under wind condition for head on wind and side on wind velocity at 3 m/s. Overall it was found that the natural and forced convection total heat loss increases with increase in mean fluid temperature. The combined heat loss decreases sharply with the increase in cavity inclination and observed to be maximum for horizontal position of receiver and minimum with the receiver facing vertically downward for all investigations. The maximum heat lossin wind test (V=3m/s) is 1045 W at θ=0° cavity inclination at mean fluid temperature 68 °C and minimum at 173 W θ=90° at 53°C. Total heat loss from the receiver under wind condition (V=3m/s) is up to 25% higher(1.25 times at 0° inclination) than without wind at mean fluid temperature ~70°C and minimum 19.64 % (1.2 times at 90° inclination) in mean temperature ~50 °C . In horizontal position of the receiver (θ=0°), the totalheat loss by head on wind is about 1.23 times (18% higher ) as compared to side on wind (at fluid mean temperature ~ 70°C). For receiver facing downward (θ=90°), for head-on wind, total heat loss is approximately the same as that for side-on wind.
An empirical model for natural convection heat transfer for film-boiling condition has been developed for volumetrically heated particulate debris beds when flooded with water at the top of the bed. The model has been derived from the quenching data generated in the POMECO facility located at KTH, Stockholm. A dryout model is also developed for countercurrent flooding limiting condition when the heat generating saturated debris bed is flooded with water from the top. The model is in good agreement with the experimental data over a wide range of particle size and porosity as compared to the existing models. The implication of the models with respect to quenching of porous debris bed formed during postulated severe accident condition is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.